Las Virgenes Municipal Water District 4232 Las Virgenes Rd., Calabasas, CA 91302

2023 Water Quality and Consumer Confidence Report

To OUR VALUED CUSTOMERS:

LVMWD's mission to provide high-quality, reliable water service in a cost-effective and environmentally sensitive manner has never been more important. Ensuring the continued delivery of safe water in the face of climate impacts, emerging contaminants, and inflation, while protecting the environment, is not without its challenges. While we have the technology and expertise to meet these expectations, achieving this goal with rising costs is something with which water agencies across the state must contend. Nevertheless, the LVMWD Board of Directors and staff are up to the challenge and committed to LVM-WD's mission.

I am happy to report once again that the drinking water served to our valued customers meets or exceeds all state and federal drinking water standards. Staff have collected over 1,200 samples of drinking water from the distribution system in 2023 and conducted more than 11,000 different tests to guarantee that the water is safe every time you turn on the tap at your home or business. The results of these water quality tests are included in this annual report.

While we have either met or exceeded all current drinking water standards, new standards are in the pipeline, and we are ready to tackle them. Whether PFAS (forever chemicals) or other constituents of emerging concern, our number one commitment is ensuring the safety of your water. Looking ahead, we are also committed to improving reliability through the diversification of our water supply portfolio in the years to come.

Inflation spares no one, and as costs rise for nearly every necessity you can think of, so does the price of water. In response, our water wholesaler, the Metropolitan Water District of Southern California (MWD), announced a rate increase equivalent to about 30% over the course of the next two years, which will be incurred by member agencies like ours and ultimately, our customers. To minimize cost impacts, LVMWD continues to plan for projects like the Pure Water Project Las Virgenes – Triunfo, which will create a new local source of water and make us less reliant on pricey imported water. Additional efforts include studying the feasibility of ocean desalination and infrastructure interconnections with other agencies.

Making the most of this precious resource through water use efficiency is also a priority as it is the cheapest and most practical water supply mangement strategy available. Our Landscape Transformation Program offers incentives to customers to convert their thirsty lawns to climate appropriate landscapes and seeks to minimize the need for expensive water supply alternatives in the first place.

DEDICATED TO PROVIDING HIGH-QUALITY, RELIABLE WATER SERVICE IN A COST-EFFECTIVE AND ENVIRONMENTALLY SENSITIVE MANNER.

All our business practices and the projects we pursue prioritize both the environment and you, our customers. LVMWD strives to keep water rates affordable without compromising our environment or the safety of our water. Whether that means installing solar panels that provide clean, renewable energy for our water and wastewater systems or taking advantage of artificial intelligence to optimize our treatment processes, LVMWD has and will continue to embrace innovation to do what we do as costeffectively as possible. Thank you for your trust and support.

Daniel W. Paleun

David W. Pedersen, PE General Manager

1,200 SAMPLES AND 11,000 TESTS ANNUALLY

Every year, LVMWD diligently executes extensive state-mandated testing for water quality constituents by collecting over 1,200 water samples, taken from throughout the drinking water system, and conducts over 11,000 laboratory analyses, in a state-certified water quality lab, to ensure high-quality drinking water and public health. These tests are conducted by highly-trained and skilled professionals. This continuous and important routine ensures that our water is not only safe to drink but also is consistently the best it can be. Yet, 39% of LVMWD customers prefer bottled water because they believe it is of higher quality than tap water. While bottled water companies are also required to conduct testing for water quality through the Food and Drug Administration, water utilities in California are required by the State Division of Drinking Water to undergo, arguably, the most stringent and comprehensive water quality testing in the United States, if not the world. Your water is incredibly safe to drink straight from the tap. LVMWD continues to meet or exceed all the standards for safe and high-quality drinking water as established by these strict state mandates.

YOUR WATER AND THIS REPORT

LVMWD is entirely dependent upon water imported from elsewhere; there are no local drinking water sources. The supply to our region travels hundreds of miles from Lake Oroville in the Sierras via the State Water Project and is then treated and conveyed to the District by the Metropolitan Water District of Southern California (MWD). LVMWD is one of MWD's 26 member agencies.

Your water is routinely tested before it ever reaches the tap. This report conveys the results of tests conducted in 2023. Readers of this report sometimes ask if the substances identified in the report are harmful. It is normal to find trace amounts of contaminants in tap water or bottled water unless it is distilled or treated through a process such as reverse osmosis. Trace salts and minerals are natural and keep water from tasting "flat."

When evaluating the presence of contaminants in your water, consider the following comparative measures:

One part per million (milligrams per liter) equals three drops of a substance or contaminant added to a 42-gallon barrel.

One part per billion (micrograms per liter) equals one drop of a substance or contaminant added to a large tanker truck.

One part per trillion (nanograms per liter) equals ten drops of a substance or contaminant added to the Rose Bowl Stadium filled with water.

One part per quadrillion (picograms per liter) equals two teaspoons of a substance or contaminant added to Utah's Great Salt Lake.

Parts Per MILLION (milligrams per liter)

3 drops added to a 42-gallon barrel.

Parts Per BILLION ((micrograms per liter)

1 drop added to a large tanker truck.

Parts Per (nanograms per liter) 10 drops added to the Rose Bowl. Parts Per GUADRILION

(picograms per liter)

2 teaspoons added to the Great Salt Lake.

SUBSTANCES FOUND IN DRINKING WATER

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturallyoccurring minerals and various contaminants.

Contaminants that we test for and may be present in source water include:

- Microbes, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganics, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.
- Radioactive materials that can be naturally occurring or the result of oil and gas production and mining activities.

Organic chemicals, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production. These chemicals can also come from gas stations, urban stormwater runoff, agricultural operations, and septic systems.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk.

> More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

HEALTH ADVISORY FOR PERSONS

WITH WEAKENED IMMUNE SYSTEMS

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised, such as those undergoing chemotherapy, those who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, and some elderly and infants, can be particularly at risk from infections. These people should seek advice from their health care providers about drinking

water.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

How to read these tables

These tables may contain complex measurements and terminology, but they also contain valuable information about the water delivered to your tap. The District is required to report contaminants that are detected; **none were found at levels considered to be unsafe or unhealthy in LVMWD tap water.**

Testing results are presented for source water from the Jensen Water Treatment Plant operated by the Metropolitan Water District of Southern California (MWD) and for LVMWD's water delivery system. The values provided in the "LVMWD" column more closely represent the quality of water delivered to most homes and businesses. Should you have any questions or need clarification, please call us at (818) 251- 2200, or contact any of the agencies listed in this report under "Additional Information."

DEFINIT	ION OF TERMS
AL	Action Level
Average	Result based on arithmetic mean
CaCO3	Calcium Carbonate
CFE	Combined Filter Effluent
CFU	Colony-Forming Units
DLR	Detection Limits for Purposes of Reporting
EPA	Environmental Protection Agency
HAA5	Sum of Five Haloacetic Acids
HPC	Heterotrophic Plate Count
LRAA	Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12-month period
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MRDL	Maximum Residual Disinfectant Level
MRDLG	Maximum Residual Disinfectant Level Goal
NA	Not Applicable - no established MCL, or testing not conducted
ND	Not Detected at or above DLR or RL
NL	Notification Level to SWRCB
NTU	Nephelometric Turbidity Units
pCi/L	picoCuries per Liter
PHG	Public Health Goal
ppb	parts per billion or micrograms per liter (μg/L)
ppm	parts per million or milligrams per liter (mg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
RAA	Running Annual Average; highest RAA is the highest of all Running Annual Averages calculated as an average of all the samples collected within a 12-month period
Range	Results based on minimum and maximum values; range and average values are the same if a single value is reported for samples collected once or twice annually
RL	Reporting Limit
SI	Saturation Index (Langelier)
SWRCB	State Water Resources Control Board
TDS	Total Dissolved Solids
TON	Threshold Odor Number
TT	Treatment Technique is a required process intended to reduce the level of a contaminant in drinking water with no established MCL
TTHMs	Total Trihalomethanes
μS/cm	microSiemen per centimeter; or micromho per centimeter (μmho/cm)

HOW DID WE DO IN 2023? WATER QUALITY REPORT

(BASED ON WATER SAMPLED IN 2023)

Primary Standards apply to contaminants that may be unhealthy at certain levels. They are measured in terms of Maximum Contaminant Levels (MCLs) as published by the State of California. If water contains a contaminant level above a primary MCL, the safety of the water cannot be assured. None of the tests for water served to LVMWD customers exceeded the MCLs.

WATER QUALITY STANDARDS MET
MAJOR SOURCES IN DRINKING WATER
ГЛММД
JENSEN PLANT
RANGE AVERAGE
STATE DLR (RL)
DHG
STATE OR FEDERAL MCL [MRDL]
UNITS
PARAMETER

Percent State Water Project	%	AN	AN	AN	Range	100	100	ИА	NA
	đ	RIMAR	Y STANI	DARDS	-Manda	tory He	alth-Re	PRIMARY STANDARDS—Mandatory Health-Related Standards	
					CLARITY	зітҮ			
Combined Filter Effluent	NTU	TT	NA	AA	Highest	0.07	0.21	Soil runoff	NA
(CFE) Turbidity (a)	%				% <u><</u> = 0.3	100	100		
					MICROBIOLOGICAL	LOGICA	L		
Total Coliform Bacteria (b)	··· %	TT	MCLG = 0	NA	Range	0 - 0.3	ND	Naturally present in the environment	YES
	Positive Monthly Samples				Average	0.07			
Heterotrophic Plate Count	CFU/mL	ТТ	NA	(1)	Range	DN	ND - 25	Naturally present in the environment	YES
(HPC) Bacteria					Median		ND		
				ONI	RGANIC	CHEMICALS	ALS		
Aluminum (c)	qdd	1,000	600	50	Range	ND - 83	ND - 57	Residue from water treatment process;	YES
					Average	ND	ND	runoff and leaching from natural deposits	
Arsenic	ddd	10	0.004	2	Range	ND	ND - 2	Natural deposits erosion, glass and	YES
					Average		ND	electronics production wastes	
Fluoride (d)	mdd	2.0	1	0.1	Range	0.6 - 0.8	0.6 - 0.7	Runoff and leaching from natural deposits; water	YES
					Average	0.7	0.7	additive that promotes strong teeth; discharge from fertilizer and aluminum actories	
Nitrate (as Nitrogen)	mdd	10	10	0.4	Range	1.0	0.7- 1.2	e; septic tank	YES
					Average		1.0	and sewage; natural deposits erosion	
					RADIOLOGICALS	OGICALS			
Combined Radium-226 +	pci/L	5	MCLG - 0	AA	Range	DN	< 1.45	Erosion of natural deposits	ΥES
228 (e)					Average				

Uranium (f)	pCi/L	20	0.43	1	Range	2 - 3	1.2	Erosion of natural deposits	ΥES
					Average	2			
DISINFECTION BYPRODUCTS,	N BYPR	ODUCTS	S, DISINFECTANT	ECTANT	RESIDUALS, AND	LS, AND		DISINFECTION BYPRODUCT PRECURSORS	(g)
Total Trihalomethanes	qdd	80	NA	1.0	Range	16 - 56	13 - 86	Byproduct of drinking water chlorination	YES
(TTHMs) (Plant Core Locations and Distribution System) (h)					Highest LRAA	32	64		
Sum of Five Haloacetic Acids	ddd	60	ΝA	1.0	Range	2.8 - 7.1	4.2 - 26	Byproduct of drinking water chlorination	ΥES
(HAA5) (Plant Core Locations and Distribution System) (h)					Highest LRAA	6.3	13.0		
Total Chlorine Residual	mdd	MRDL =	MRDLG =	(0.05)	Range	1.2 - 3.0	ND - 2.8	Drinking water disinfectant added for treatment	YES
		4.0	4.0		Highest RAA	2.5	1.9		
Bromate	qdd	10	0.1	1.0	Range	ND - 14	NA	Byproduct of drinking water ozonation	YES
					Highest RAA	7.6			
Total Organic Carbon (TOC)	mdd	TT	NA	0.30	Range	1.4 - 2.6	3.7 - 5.3	Various natural and man-made sources;	YES
					Highest RAA	2.1	4.2	TOC is a precursor for the formation of disinfection byproducts	
		S	SECONDARY ST	ARY ST	ANDARD	os-Aes	thetic S	ANDARDS—Aesthetic Standards	
Aluminum (c)	qdd	200	600	50	Range	ND - 83	ND - 57	Residue from water treatment process;	YES
					Average	ND	ND	runoff/leaching from natural deposits	
Chloride	mdd	500	NA	(2)	Range	48 - 58	48 - 68	Runoff/leaching from natural deposits;	YES
					Average	53	59	seawater influence	
Color	Color	15	AN	(1)	Range	-	ND - 15	Naturally-occurring organic materials	YES
	OTILLS				Average		ND		
Manganese	dqq	50	NL = 500	(5)	Range	ND	ND - 6.3	Leaching from natural deposits	YES
					Average		ND		
Odor Threshold	TON	3	NA	-	Range	2	ND - 1	Naturally-occurring organic materials	YES
					Average		ND		
Specific Conductance	µS/cm	1,600	NA	NA	Range	578-604	520 - 700	Substances that form ions in water; seawater	YES
					Average	591	595	influence	
Sulfate	mdd	500	NA	0.5	Range	95 - 112	100 - 110	Runoff/leaching from natural deposits;	YES
					Average	104	102	industrial wastes	
Total Dissolved Solids, Filter-	mdd	1,000	NA	(2)	Range	357 - 367	310 - 350	Runoff/leaching from natural deposits	YES
able (su i) able					Average	362	338		
Turbidity	NTU	D	AN	0.1	Range	DN	ND-3.9	Soil runoff	YES
					Average		0.1		

PARAMETER	UNITS	STATE OR FEDERAL MCL [MRDL]	PHG (MCLG) [MRDLG]	STATE DLR	RANGE AVERAGE	JENSEN PLANT	LVMWD	MAJOR SOURCES IN DRINKING WATER	WATER QUALITY STANDARDS MET
				ОТІ	HER PARAMETERS	RAMETE	IRS		
				GI	ENERAL MINERALS	MINERAL	S		
Alkalinity (as CaCO3)	mdd	NA	AN	(1)	Range	85 - 102	ND - 26	Runoff/leaching of natural deposits; carbonate,	NA
					Average	94	6.5	bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate	
Calcium	mdd	AN	AN	(0.1)	Range	39 - 40	33 - 40	Runoff/leaching from natural deposits	AN
					Average	40	37		
Hardness (as CaCO ₃)	bpm	NA	AA	(1)	Range	138 - 153	113 - 144	Runoff/leaching from natural deposits; sum of	NA
					Average	146	134	polyvalent cations, generally magnesium and cal- cium present in the water	
Magnesium	mdd	AA	NA	(10.0)	Range	10 - 12	7.3 - 11.6	Runoff/leaching from natural deposits	РА
					Average	11	9.6		
Potassium	bpm	ΝA	NA	(0.2)	Range	2.4 - 2.6	ΔA	Salt present in the water; naturally-occurring	ΔA
					Average	2.5			
Sodium	bpm	ΔA	NA	(1)	Range	60 - 68	50 - 68	Salt present in the water; naturally-occurring	ΔA
					Average	64	58		
				UNREG	ULATED	CONTAMINANTS	NANTS		
Boron	qdd	NL = 1,000	AN	100	Range	190	AA	Runoff/leaching from natural deposits; industrial	YES
					Average			wastes	
Lithium	qdd	NA	AN	(10)	Range	ND - 10	NA	Naturally-occurring; used in electrochemical cells,	YES
					Average	ND		batteries, and organic syntheses and pharmaceu- ticals	
Vanadium	bpb	NL = 50	NA	×	Range	3.9	AN	Naturally-occuring, industrial waste	YES
					Average			discharge	
				NITR	NITROSAMINE	COMPOUNDS	NDS		
N - Nitrosodimethylamine	ppt	NL = 10	3	(2)	Range	3.5	ND	Byproducts of drinking water chloramination;	ΥES
					Average			industrial processes	
					MISCELL/	ANEOUS			
Corrosivity	SI	AN	NA	AN	Range	0.19 - 0.79	0.17 - 0.87	A measure of the balance between pH and calci-	NA
(as Saturation Index) (j)					Average	0.49	0.48	um carbonate saturation in the water	
Hd	pH Units	AA	NA	AN	Range	8.2 - 8.6	7.2 - 9.3	NA	ΥĂ
					Average	8.4	8.3		

PARAMETER	YEAR SAMPLED	UNITS	AL	(MCLG) (MCLG)	STATE DLR	90TH PERCENTILE	# SITES SAMPLED	# SITES OVER	EXCEEDED AL Y/N	MAJOR SOURCES IN DRINKING WATER	WATER QUALITY STANDARDS
				[אדררם]		2021	2021	AL 2021			MET
					ONI	RGANIC	CHEMICALS	LS			
Lead (k)	2021	qdd	15	0.2	ъ	4.8	33	-	z	House pipes internal cor- rosion; erosion of natural deposits	YES
Copper (k)	2021	mdd	1.3	0.3	0.05	0.22	33	0	z	House pipes internal cor- rosion; erosion of natural deposits	YES
						FOOTNO	OTES				
(a)	Turbidity, a measure of cloudiness of the water, is an indicator of treatme standard of less than 5 NTU.	of cloudine 5 NTU.	ss of the	water, is an indi	cator of treatm	ient performance. Tui	bidity was in com	pliance with	the TT primary drink	int performance. Turbidity was in compliance with the TT primary drinking water standard and the secondary drinking water.	ndary drinking water
(q)	Compliance is based on monthly samples from treatment plant effluents	on monthly	y sample	s from treatment	plant effluent	s (MWD) and the distribution system.	ribution system.				
(c)	Metropolitan's compliance with the State MCL for aluminum is based on	iance with t	the State	MCL for alumin	um is based or	n RAA. No secondary standard MCL exceedance occurred	standard MCL ex	ceedance oc	curred.		
(d)	Metropolitan was in compliance with all provisions of the State's fluoridation system aintenance work in 2023, resulting in occasional fluoride levels below 0.7 mg/L	compliance 2023, resu	with all _F Ilting in o	provisions of the ccasional fluorid	State's fluorid e levels belov	ation system requirer v 0.7 mg/L	ments. Fluoride fe	ed systems v	were temporarily out	Metropolitan was in compliance with all provisions of the State's fluoridation system requirements. Fluoride feed systems were temporarily out of service during treatment plant shutdowns and/or maintenance work in 2023, resulting in occasional fluoride levels below 0.7 mg/L	shutdowns and/or
(e)	LVMWD is on a reduc	ed monitor:	ring sche	dule for Combin	ed Radium-22	LVMWD is on a reduced monitoring schedule for Combined Radium-226+228. Sample results from 6/8/2020	ts from 6/8/2020				
(f)	LVMWD is on a reduced monitoring schedule for Uranium. Sample results from 2/19/2020.	ed monitor	ring sche	dule for Uraniun	ı. Sample resu	ilts from 2/19/2020.					
(6)	Compliance with the State and Federal MCLs is based on RAA or LRAA, ment plant effluents.	State and F	⁼ ederal N	1CLs is based or	RAA or LRAF		ropolitan plant co	re locations	for TTHM and HAA5	as appropriate. Metropolitan plant core locations for TTHM and HAA5 are service connections specific to each of the treat-	to each of the treat-
(H)	PHG assigned for each THM analyte (bromodichloromethane, bromoform ch analyte (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, mor combinations and ratios of the other THMs and HAA5 in a particualr sample.	ch THM ani scetic acid, ios of the o	alyte (brc dichloro ther THN	modichlorometh acetic acid, trichl 1s and HAA5 in a	ane, bromofo loroacetic acic a particualr sa	rm chloroform, and d 1, monobromoacetic ; mple.	ibromochloromeh acid) as 53 ppb, 0	ane) as 0.06 2 ppb, 0.1 pp	ppb, 0.5 ppb, 0.4 pl vb, 25 ppb, and 0.03	PHG assigned for each THM analyte (bromodichloromethane, bromoform chloroform, and dibromochloromehane) as 0.06 ppb, 0.5 ppb, 0.4 ppb, and 0.1 ppb, accordingly; and for each HAA5 analyte (monochloroacetic acid, trichloroacetic acid, monobromoacetic acid) as 53 ppb, 0.2 ppb, 0.1 ppb, 25 ppb, and 0.03 ppb, respectively. Health risk varies with different combinations and ratios of the other THMs and HAA5 in a particualr sample.	for each HAA5 ies with different
(i)	Results in chart are fo	or Metropol	litan's Jei	nsen Plant. Metro	politan's distr	Results in chart are for Metropolitan's Jensen Plant. Metropolitan's distribution system had a range of ND-5.3 and an average of 2.2 for NDMA.	range of ND-5.3	and an avera	ge of 2.2 for NDMA.		
(i)	Positive SI = non-corrosive; tendency to precipitate and/or deposit scale	osive; tend	lency to p	precipitate and/c	r deposit scal		SI = corrosive; te	ndency to di	on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate.	mate.	
(K)	Thirty-three (33) hous	seholds wei	re sampl	ed in 2021 to dei	termine the 9(Thirty-three (33) households were sampled in 2021 to determine the 90th percentile and none exceeded the action level.	ne exceeded the	action level.			
LVMWD cut	LVMWD customers exceeded the MCLs.	rate the	e MC	tenuy mgn-q Ls.	uality wat					LVMWD customers exceeded the MCLs.	
Total Trik 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Trihalomethanes (TTHMs)	(TTHMS)		Sum of Five Haloacetic Acids (HAA5) C0 60 50 50	Five Haloace (HAA5) 60	reis of Copper els of Copper	1.4 1.2 1.0 0.8	m		16 15 15 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	
20 3 40 50 20 30 50 20 20 20 20 20 20 20 20 20 20 20 20 20			vəl zaah	40 30 20		₩ Naj batsaT	0.6		22	∞ 0 4 ¢	4.8
10 0 State	State or Federal MCL LVN	LVMWD 2023		10 0 State or Federal MCL		LVMWD 2023	0 Action Level		90th Percentile	Action Level	90th Percentile

LEARNING MORE ABOUT LEAD EXPOSURE

News stories have raised questions about the presence of lead in drinking water systems. LVMWD's water distribution system has no lead pipes. In compliance with monitoring requirements, the District tested for lead at 33 different locations throughout the service area. Results show that the levels of lead in LVMWD's water are well within state and federal guidelines.

In our region, lead in drinking water primarily comes from materials and components associated with home plumbing. These sources can include pipes, soldering materials used at pipe joints, and older fixtures such as faucets. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children.

During 2018, LVMWD completed state mandated sampling and testing for lead at all 13 public schools within our service area. **All schools passed and**

tested below the limit for lead. In 2023 lead and copper tests were not requested by any schools.

When your water has been sitting for extended periods of time, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at <u>epa.gov/safewater/lead</u>

PFAS/PFOA - INFORMATION FOR OUR CUSTOMERS

PFOA/PFOS ARE THE ONLY TWO KNOWN CARCINOGENS WITHIN THE PFAS FAMILY AND HAVE NOT BEEN FOUND IN LVMWD DRINKING WATER.

Concerns over per- and polyfluoroalkyl substances, or "PFAS", have been in the news recently and LVMWD customers deserve to be in the know. Our commitment to transparency and the delivery of safe, high quality water remains at the forefront of our mission.

PFAS, first developed in the 1940's, are human-made substances commonly found in consumer products, such as non-stick pans, water resistant clothing, and food packaging. These substances are also present in firefighting foam, manufacturing industries, airports, and military facilities. They are considered extremely stable, meaning the compounds within the chemicals do not break down, lending them the name "forever chemicals".

As with just about anything, the prevalence of PFAS means that they eventually end up present in the environment. They are found in soil, air, surface and groundwater, wastewater, landfills, and even within the human body. While more than 7,800 types of PFAS have been discovered, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are most

commonly found in the U.S. These substances are the only two known carcinogens within the PFAS family, and have **NOT been found in LVMWD drinking water**.

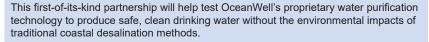
As you know, LVMWD purchases 100% of our water supply from MWD who delivers it from the Sierra mountain snowpack through 400 miles of pipes and aqueducts. After years of periodic testing and improvements in testing technology, MWD discovered one form of PFAS – perfluorohexanoic acid (PFHxA) – in the drinking water supply. This substance is **NOT** a known carcinogen and is not yet regulated in the U.S.

LVMWD has not been required to test for PFAS at any source site or routine distribution site. However, in accordance with recent EPA regulations setting maximum contaminant levels on PFAS, LVMWD will be required to conduct testing during the 2024-2027 initial monitoring period and those results will be listed in the CCR starting in 2027 if it violates the MCL.

More information can be found at **EPA.gov/sdwa/and-polyfluoroalkyl-substances-pfas**

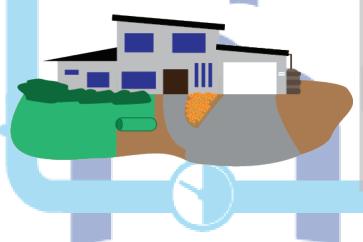
Be sure to follow LVMWD on Facebook, Twitter @lvmwd and Instagram @LasVirgenes_MWD to join the conversation.

Las Virgenes Municipal Water District provides potable water, wastewater treatment, recycled water and biosolids composting to more than 75,000 residents in the cities of Agoura Hills, Calabasas, Hidden Hills, Westlake Village, and unincorporated areas of western Los Angeles County.


Pure Water Project Las Virgenes Triunfo

The Pure Water Project Las Virgenes - Triunfo will provide up to 30% of our drinking water needs while helping the District meet strict regulatory requirments surrounding Malibu Creek.

Using tried and true technology in concert with existing facilities, the Pure Water Project will produce high quality water. The process begins with the highly treated recycled water from the wastewater treatment plant, then gets purified by a three step process including ultrafiltration, reverse osmosis and advanced oxidation. This Pure Water will be delivered to our Las Virgenes Reservoir to be stored until needed in the heat of the summer when demand is highest. It will then be treated again before being delivered to our customers. This will give LVMWD its first local source of drinking water. The full scale project is under design with construction scheduled to start in 2025 and operational as early as 2028.


Las Virgenes - OceanWell Partnership

This collaboration comes at an opportune time, as the region recovers from years of record-breaking drought that disproportionately impacted LVMWD's customers. Diversifying LVMWD's water portfolio is critical to minimizing future climate change impacts. The strategy includes embracing innovative solutions to create local water resources that reduce the region's dependence on imported water.

OceanWell's technology can be used in fresh, brackish, or saltwater environments, allowing any raw water source to become a potential source for drinking water. The pilot project will start testing the state-of-the-art technology in the District's Las Virgenes Reservoir in the City of Westlake Village in 2024. LVMWD is also embarking on a water supply diversification study to determine the optimal portfolio of alternative water supplies to enhance reliability in a cost effective manner. This could include desalination.

LVMWD Landscape Transformation Program

Resiliency also means limiting our outdoor water use and making our properties resilient to climate change and stressed water supplies. LVMWD offers a menu of different programs to help our customers turn the page on the cycle of brown grass - green grass.

In 2024, LVMWD will be introducing a turnkey experience where customers can receive a landscape survey to identify water saving opportunities and then retrofit and install water saving features such as drip systems and weather-based irrigation controllers. All of these services will be provided by a certified irrigation expert.

The more we can reduce demand, the further our water supplies can be stretched. Native and drought tolerant landscapes can help accomplish that goal while maintaing the beauty of our communities.

LVMWD CUSTOMER

2023 LVMWD WATER QUALITY REPORT PUBLISHED JUNE 2024

WATER QUALITY - THE SAME IN ANY LANGUAGE

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

FARSI

ئمېتوانىداين اطلاع. ترا بزې.ن انگليسى

اطلاع. ٺ مهمي راجـ م به "ب " شميدني امت . اگُر

ابراى شمابە قارىسى ترجمەكند. اين املاعيە شامل

بخوانيدلمة. ازكسىكەميتواندې.رىبگيرېدت.مط.لبر

SPANISH

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

HEBREW

הדו"ח הזה מכיל מידע חשוב לגבי מי השתייה שלך תרגם את הדו"ח או דבר עם מישהו שמבין אותו

这份报告中有些重要的信息, 讲到关于您所在社区的水的品 质。请您找人翻译一下,或者 请能看得懂这份报告的朋友给 您解释一下。

CHINESE

JAPANESE

この資料には、あなたの飲料水 についての大切な情報が書かれ ています。内容をよく理解する ために、日本語に翻訳して読む か説明を受けてください。

FOR MORE INFORMATION

LVMWD encourages you to stay informed about your water. Sign up for eNotification at <u>LVMWD.com/</u> <u>eNotification</u> to receive information on a variety of topics that interest you. Be sure to check the website frequently for timely information on water conservation and other topics.

The District publishes *The e-Current Flow* on our website at <u>LVMWD.com/e-Current-Flow</u>. The customer newsletter is also delivered with your bill.

The LVMWD Board of Directors meets at 9 a.m. on the first and third Tuesday of each month. These meetings are conducted at District Headquarters, 4232 Las Virgenes Rd., in Calabasas, and are open to the public and live streamed at LVMWD.com/LiveStream

If you wish to speak with someone about your water service please contact us at (818) 251-2200 or e-mail <u>Customer_Service@LVMWD.com</u>.

ADDITIONAL INFORMATION ABOUT DRINKING WATER SAFETY AND STANDARDS

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY - STATE WATER RESOURCES CONTROL BOARD

1001 I St. Sacramento, CA 95814 (916) 449-5577 waterboards.ca.gov/tiny/pws.shtml

U.S. Environmental Protection Agency (USEPA)

Office of Ground and Drinking Water 401 M St., SW Washington, DC 20460 (800) 426-4791 epa.gov/safewater

U.S. CENTER FOR DISEASE CONTROL AND PREVENTION

1600 Clifton Rd. Atlanta, GA 30333 (800) 311-3435 <u>cdc.gov</u>