

To Our Valued Customers:

Our number one job at LVMWD is to provide you with safe and reliable water.

Over the last year we have experienced some challenging times here at LVMWD, and throughout the communities we serve. We faced three years of historic drought that required us to implement some of the toughest water restrictions that we've ever had. We are thankful for the work that each of you did to pitch in to help conserve water. Your work and collective efforts were able to carry us through that water supply crisis, and we are fortunate that in December, rain and snow came storming back to California in a way that we haven't seen in decades.

There's no doubt that over the last year the water supply has been variable, but what will never change is our commitment to providing you with safe water. We realize, and do not take for granted, that you trust us to do that job for you.

We accomplish this critical job through our trained, knowledgeable, and certified employees who collect samples from throughout the water system every day. Staff pull 1,200 samples in total every year, and they are analyzed in our state certified water quality lab for 11,000 different parameters to guarantee your water is safe every time you turn on the tap.

The District provides all that data to our customers, as well as the testing results provided from the Metropolitan Water District of Southern California (MWD) for the water provided to the District. Every year, we compile this data into a report called the Annual Water Quality/Consumer Confidence Report. In addition to printed copies available on request or in public spaces throughout the community, this report is also available in a new digital format that's more accessible to customers this year, building on the District's commitment to transparency, accessibility and sustainability. We welcome our customers to review this report and reach out if you have questions about the data contained within.

We are proud to announce that our drinking water again meets or exceeds all state and federal drinking water standards.

Thank you,

David W. Pedersen, PE General Manager

Waril W. Oaleur

1,200 Samples and 11,000 Tests Annually

Every year, LVMWD diligently executes extensive state-mandated testing for water quality constituents by collecting over 1,200 water samples, taken from the drinking water system, and conducts over 11,000 laboratory analyses, in a state-certified water quality lab, to ensure high-quality drinking water and public health. These tests are conducted by highly-trained and skilled professionals. This continuous and important routine ensures that our water is not only safe to drink but also is consistently the best it can be. Yet, 39% of LVMWD customers prefer bottled water because they believe it is of higher quality than tap water. While bottled water companies are also required to conduct testing for water quality through the Food and Drug Administration, water utilities in California are required by the State Division of Drinking Water to undergo, arguably, the most stringent and comprehensive water quality testing in the United States, if not the world. Your water is incredibly safe to drink straight from the tap. LVMWD continues to meet or exceed all the standards for safe and high-quality drinking water as established by these strict state mandates.

YOUR WATER AND THIS REPORT

LVMWD is entirely dependent upon water imported from elsewhere; there are no local drinking water sources. The supply to our region travels hundreds of miles from Lake Oroville in the Sierras via the State Water Project and is then treated and conveyed to the District by the Metropolitan Water District of Southern California (MWD). LVMWD is one of MWD's 26 member agencies.

Your water is routinely tested before it ever reaches the tap. This report conveys the results of tests conducted in 2021. Readers of this report sometimes ask if the substances identified in the report are harmful. It is normal to find trace amounts of contaminants in tap water or bottled water unless it is distilled or treated through a process such as reverse osmosis. Trace salts and minerals are natural and keep water from tasting "flat."

When evaluating the presence of contaminants in your water, consider the following comparative measures:

One part per million (milligrams per liter) equals three drops of a substance or contaminant added to a 42-gallon barrel.

One part per billion (micrograms per liter) equals one drop of a substance or contaminant added to a large tanker truck.

One part per trillion (nanograms per liter) equals ten drops of a substance or contaminant added to the Rose Bowl Stadium filled with water.

One part per quadrillion (picograms per liter) equals two teaspoons of a substance or contaminant added to Utah's Great Salt Lake.

Parts Per MILLION

(milligrams per liter)

3 drops added to a 42-gallon barrel.

Parts Per TRILLION

(nanograms per liter)

10 drops added to the Rose Bowl.

Parts Per BILLION

(micrograms per liter)

1 drop added to a large tanker truck.

Parts Per QUADRILLION

(picograms per liter)

2 teaspoons added to the Great Salt Lake.

SUBSTANCES FOUND IN DRINKING WATER

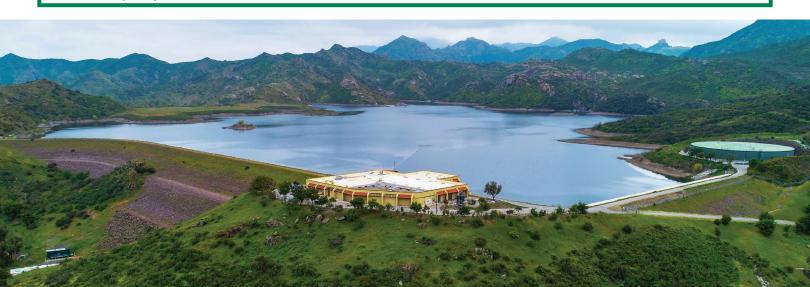
The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and various contaminants.

Contaminants that we test for and may be present in source water include:

- Microbes, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganics, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.
- Radioactive materials that can be naturally occurring or the result of oil and gas production and mining activities.

 Organic chemicals, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production. These chemicals can also come from gas stations, urban stormwater runoff, agricultural operations, and septic systems.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.


Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

HEALTH ADVISORY FOR PERSONS WITH WEAKENED IMMUNE SYSTEMS

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immunocompromised, such as those undergoing chemotherapy, those who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, and some elderly and infants, can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available by calling the **Safe Drinking Water Hotline at (800) 426-4791.**

How to read these tables

These tables may contain complex measurements and terminology, but they also contain valuable information about the water delivered to your tap. The District is required to report contaminants that are detected; none were found at levels considered to be unsafe or unhealthy in LVMWD tap water.

Testing results are presented for source water from the Jensen Water Treatment Plant operated by the Metropolitan Water District of Southern California (MWD) and for LVMWD's water delivery system. The values provided in the "LVMWD" column more closely represent the quality of water delivered to most homes and businesses. Should you have any questions or need clarification, please call us at (818) 251- 2200, or contact any of the agencies listed in this report under "Additional Information."

DEFINIT	ION OF TERMS
AL	Action Level
Average	Result based on arithmetic mean
CaCO3	Calcium Carbonate
CFE	Combined Filter Effluent
CFU	Colony-Forming Units
DLR	Detection Limits for Purposes of Reporting
EPA	Environmental Protection Agency
HAA5	Sum of Five Haloacetic Acids
HPC	Heterotrophic Plate Count
LRAA	Locational Running Annual Average; highest LRAA is the highest of all Locational Running Annual Averages calculated as an average of all samples collected within a 12-month period
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MRDL	Maximum Residual Disinfectant Level
MRDLG	Maximum Residual Disinfectant Level Goal
NA	Not Applicable - no established MCL, or testing not conducted
ND	Not Detected at or above DLR or RL
NL	Notification Level to SWRCB
NTU	Nephelometric Turbidity Units
pCi/L	picoCuries per Liter
PHG	Public Health Goal
ppb	parts per billion or micrograms per liter (µg/L)
ppm	parts per million or milligrams per liter (mg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
RAA	Running Annual Average; highest RAA is the highest of all Running Annual Averages calculated as an average of all the samples collected within a 12-month period
Range	Results based on minimum and maximum values; range and average values are the same if a single value is reported for samples collected once or twice annually
RL	Reporting Limit
SI	Saturation Index (Langelier)
SWRCB	State Water Resources Control Board
TDS	Total Dissolved Solids
TON	Threshold Odor Number
TT	Treatment Technique is a required process intended to reduce the level of a contaminant in drinking water with no established MCL
TTHMs	Total Trihalomethanes
μS/cm	microSiemen per centimeter; or micromho per centimeter (µmho/cm)

HOW DID WE DO IN 2022? WATER QUALITY REPORT

(BASED ON WATER SAMPLED IN 2022)

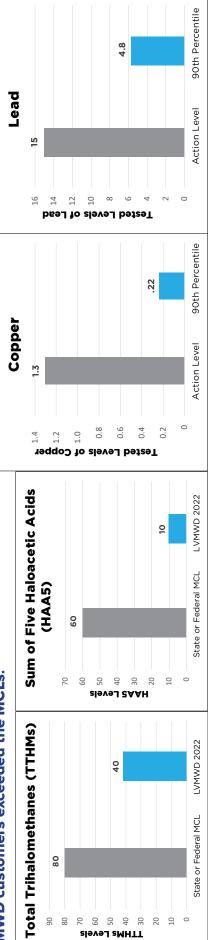
Primary Standards apply to contaminants that may be unhealthy at certain levels. They are measured in terms of Maximum Contaminant Levels (MCLs) as published by the State of California. If water contains a contaminant level above a primary MCL, the safety of the water cannot be assured. None of the tests for water served to LVMWD customers exceeded the MCLs.

WATER QUALITY STANDARDS MET	
MAJOR SOURCES IN DRINKING WATER	
LVMWD	
JENSEN PLANT	
RANGE AVERAGE	
STATE DLR (RL)	
D H G	
STATE OR FEDERAL MCL [MRDL]	
UNITS	
PARAMETER	

Percent State	%	4 Z	ΑN	ΑN	Range	100	100	ĄZ	AN
Water Project									
	<u>~</u>	RIMAR	PRIMARY STANDARDS	DARDS		tory He	alth-Re	—Mandatory Health-Related Standards	
					CLARITY	RITY			
Combined Filter Effluent	NTU	L	ΑN	ΑN	Highest	0.05	0.24	Soil runoff	ΑN
(CFE) Turbidity (a)	%				% ≤= 0.3	100	100		
					MICROBIOLOGICAL	LOGICA	7		
Total Coliform Bacteria	% Pos-	5.0	MCLG = 0	NA	Range	0 - 0.3	0 - 6.78	Naturally present in the environment	YES
(q)	itive Monthly Samples				Average	0.04	0.74		
Heterotrophic Plate Count (HPC) Bacteria	CFU/mL	L	۲Z	(1)	Median Range	ND	ND - 2100	Naturally present in the environment	YES
					Median		3.34		
				Ž	ORGANIC	CHEMICALS	ALS		
Aluminum (c)	qdd	1,000	009	50	Range	ND - 81	ND - 85	Residue from water treatment process;	YES
					Highest RAA	62	50	runoff and leaching from natural deposits	
Arsenic	qdd	10	0.004	2	Range	2.4	ND - 2.4	Natural deposits erosion, glass and	YES
					Average		1.7	electronics production wastes	
Fluoride (d)	mdd	2.0	-	0.1	Range	0.4 - 0.8	0.7 - 0.8	Runoff and leaching from natural deposits;	YES
					Average	0.7	0.7	water additive that promotes strong teeth; discharge from fertilizer and aluminum actories	
Nitrate (as Nitrogen)	mdd	10	10	0.4	Range	6.0	0.79 - ON	Runoff and leaching from fertilizer use;	YES
					Average		0.55	septic tank and sewage; natural deposits erosion	
Nitrite (as Nitrogen)	ppm	1	1	0.4	Range	ND	ND - 0.44	Runoff and leaching from fertilizer use;	YES

					Average		ND	septic tank and sewage; natural deposits erosion	
					RADIOLOGICALS	GICALS			
Gross Beta Particle	pci/L	20	MCLG - 0	4	Range	ND - 5	ΥN	Decay of natural and man-made deposits	YES
Activity					Average	ND			
Uranium*	pCi/L	20	0.43	<u></u>	Range	ND - 3	1.2	Erosion of natural deposits	YES
					Average	ND			
DISINFECTION BYPRODUCTS,	N BYPR	ODUCTS	S, DISINFECTAN	CTANT	RESIDUALS,	LS, AND	DISINFECTION	CTION BYPRODUCT PRECURSORS	(e)
Total Trihalomethanes	qdd	80	NA	4.0	Range	16 - 30	15 - 70	Byproduct of drinking water chlorination	YES
(TTHMs) (Plant Core Locations and Distribution System) (f)					Highest LRAA	27	40		
Sum of Five Haloacetic	qdd	09	NA	6.0	Range	9.6 - QN	ND - 21	Byproduct of drinking water chlorination	YES
Acids (HAA5) (Plant Core Locations and Distribution System)					Highest LRAA	QN	10		
Total Chlorine Residual	mdd	MRDL =	MRDLG =	(0.05)	Range	0.4 - 2.9	ND - 3.13	Drinking water disinfectant added for treat-	YES
		4.0	4.0		Highest RAA	2.5	1.94	ment	
Bromate	qdd	10	0.1	1.0	Range	ND - 15	٩N	Byproduct of drinking water ozonation	YES
					Highest RAA	7.2			
Total Organic Carbon	mdd	TT	NA	0.30	Range	1.0 - 1.4	3.4 - 5.3	Various natural and man-made sources; TOC	YES
(TOC)					Highest RAA	1.5	4.1	is a precursor for the formation of disinfection byproducts	
		S	SECONDARY	S	TANDARDS		-Aesthetic S	Standards	
Aluminum (c)	qdd	200	009	50	Range	ND - 81	ND - 85	Residue from water treatment process;	YES
					Highest RAA	62	50	runoff/leaching from natural deposits	
Chloride	mdd	200	NA	(2)	Range	67 - 73	81 - 120	Runoff/leaching from natural deposits;	YES
					Average	70	91	seawater influence	
Color	Color	15	۷ ۷	£	Range		ND - 15	Naturally-occurring organic materials	YES
	Units				Average		ND		
Odor Threshold	NOT	3	NA	1	Range	3	ND - 2	Naturally-occurring organic materials	YES
					Average		ND		
Specific Conductance	μS/cm	1,600	ΑN	٧ ٧	Range	557 - 572	560 - 790	Substances that form ions in water, seawater	YES
					Average	564	672	influence	
Sulfate	mdd	200	∀ Z	0.5	Range	71 - 80	91 - 130	Runoff/leaching from natural deposits;	YES
					Average	76	113	industrial wastes	

WATER QUALITY STANDARDS MET	
MAJOR SOURCES IN DRINKING WATER	
ПХММО	
JENSEN	
RANGE AVERAGE	
STATE	
PHG (MCLG) [MRDLG]	
STATE OR FEDERAL MCL [MRDL]	
SLINO	
PARAMETER	


Total Dissolved Solids,	mdd	1,000	٩Z	(2)	Range	332 - 335	400 - 450	Runoff/leaching from natural deposits	YES
Filterable (TDS)					Average	334	430		
Turbidity	NTO	വ	∀ V	0.1	Range	ND	ND - 0.3	Soil runoff	YES
					Average		0.1		
				OT	HER PARAMETERS	RAMETE	ERS		
					GENERAL MINERALS	MINERAL	S-		
Alkalinity (as CaCO3)	mdd	Ϋ́Z	₹ Z	(1)	Range	84	6.9 - QN	Runoff/leaching of natural deposits; carbon-	ΑN
					Average		1.7	ate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate	
Calcium	mdd	Ϋ́	Ϋ́Z	(0.1)	Range	32 - 34	38 - 46	Runoff/leaching from natural deposits	ΑN
					Average	33	41		
Hardness (as CaCO3)	mdd	ΑN	NA	(1)	Range	107 - 110	141 - 179	Runoff/leaching from natural deposits; sum	٨Z
					Average	108	161	of polyvalent cations, generally magnesium and calcium present in the water	
Magnesium	mdd	ΑN	Ϋ́Z	(0.01)	Range	6.2 - 7.5	10.6 - 20.5	Runoff/leaching from natural deposits	AN
					Average	6.8	14		
Potassium	mdd	ΑN	ΑN	(0.2)	Range	2.0	ΑN	Salt present in the water; naturally-occurring	NA
					Average				
Sodium	mdd	AN	NA	(1)	Range	71 - 72	06 - 69	Salt present in the water; naturally-occurring	٨٧
					Average	72	77		
				UNREG	UNREGULATED (CONTAMINANTS	INANTS		
Boron	qdd	=	ΑN	100	Range	220	VΑ	Runoff/leaching from natural deposits; in-	YES
		1,000			Average			dustrial wastes	
Chlorate	qdd	NL = 800	Ϋ́Z	20	Range	243	٩N	Byproduct of drinking water chlorination;	YES
					Average			ındustrial processes	
Vanadium	qdd	NL = 50	NA	3	Range	6.2	ΑN	Naturally-occuring, industrial waste	YES
					Average			discharge	
					MISCELLANEOUS	ANEOUS			
Corrosivity (as Saturation Index) (g)	IS	۲	Ϋ́Z	∢ Z	Range	0.27 - 0.32	0.34 - 0.79	A measure of the balance between pH and calcium carbonate saturation in the water	∢ Z
					Average	0.30	0.49		
На	Ha.	۲	∀ Z	ΑN	Range	8.2 - 8.3	7.1 - 8.7	Ą۷	A A
	Units				Average	8.3	8.1		

WATER QUALITY STANDARDS MET
OURCES IN
MAJOR SOURCES IN DRINKING WATER
EXCEEDED AL Y/N
SITES OVER AL 2021
SITES SAMPLED 2021
90TH # SITES PERCENTILE SAMPLED 2021
STATE
PHG (MCLG) [MRDLG]
AL
UNITS AL
YEAR SAMPLED
PARAMETER

					INO	INORGANIC CHEMICALS	CHEMICA	VLS			
Lead (h)	2021	ppb 15 0.2	15	0.2	5	4.8	33	1	Z	House pipes internal corrosion; erosion of natural deposits	YES
Copper (h)	2021	ppm 1.3 0.3	1.3	0.3	0.05	0.22	33	0	Z	House pipes internal cor- rosion; erosion of natural deposits	YES

	FOOTNOTES FOOTNOTES
(a)	Turbidity, a measure of cloudiness of the water, is an indicator of treatment performance. Turbidity was in compliance with the TT primary drinking water standard of less than 5 NTU.
(q)	Compliance is based on monthly samples from treatment plant effluents (MWD) and the distribution system.
(c)	Compliance with the State MCL for aluminum is based on RAA. No secondary standard MCL exceedance occurred.
(p)	MWD was in compliance with all provisions of the State's fluoridation system requirements. Fluoride feed systems were temporarily out of service during treatment plant shutdowns and/or maintenance work in 2022, resulting in occassional fluoride levels below 0.7 mg/L.
(e)	Compliance with the State and Federal MCLs is based on RAA or LRAA, as appropriate. One core location from the Jensen Treatment Plant effluent's service connections was excluded in the RAA and LRAA calculations due to operational changes in the Jensen distribution system.
(f)	PHG assigned for each individual THM. Health risk varies with different combinations and ratios of the other THMs in a particular sample.
(b)	Positive SI = non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative SI = corrosive; tendency to dissolve calcium carbonate.
(h)	Thirty-three (33) households were sampled in 2021 to determine the 90th percentile and none exceeded the action level.
*	Monitoring required less than once per year. Data from most recent test used. Sample date 2/19/2020

The graphs below easily illustrate the consistently high-quality water that LVMWD delivers to our customers. None of the tests for water served to LVMWD customers exceeded the MCLs.

LEARNING MORE ABOUT LEAD EXPOSURE

News stories have raised questions about the presence of lead in drinking water systems. LVMWD's water distribution system has no lead pipes. In compliance with monitoring requirements, the District tested for lead at 33 different locations throughout the service area. Results show that the levels of lead in LVMWD's water are well within state and federal guidelines.

In our region, lead in drinking water primarily comes from materials and components associated with home plumbing. These sources can include pipes, soldering materials used at pipe joints, and older fixtures such as faucets. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children.

During 2018, LVMWD completed state mandated sampling and testing for lead at all 13 pubic schools within our service area. **All schools passed and**

tested below the limit for lead. In 2022 lead and copper tests were not requested by any schools.

When your water has been sitting for extended periods of time, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at epa.gov/safewater/lead

PFAS/PFOA - Information for our Customers

PFOA/PFOS ARE THE ONLY TWO KNOWN CARCINOGENS WITHIN THE PFAS FAMILY AND HAVE NOT BEEN FOUND IN LVMWD DRINKING WATER

Concerns over per- and polyfluoroalkyl substances, or "PFAS", have been in the news recently and LVMWD customers deserve to be in the know. Our commitment to transparency and the delivery of safe, high quality water remains at the forefront of our mission.

PFAS, first developed in the 1940's, are human-made substances commonly found in consumer products, such as non-stick pans, water resistant clothing, and food packaging. These substances are also present in firefighting foam, manufacturing industries, airports, and military facilities. They are considered extremely stable, meaning the compounds within the chemicals do not break down, lending them the name "forever chemicals".

As with just about anything, the prevalence of PFAS means that they eventually end up present in the environment. They are found in soil, air, surface and groundwater, wastewater, landfills, and even within the human body. While more than 7,800 types of PFAS have been discovered, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are most

commonly found in the U.S. These substances are the only two known carcinogens within the PFAS family, and have **NOT been found in LVMWD drinking water.**

As you know, LVMWD purchases 100% of our water supply from MWD who delivers it from the Sierra mountain snowpack through 400 miles of pipes and aqueducts. After years of periodic testing and improvements in testing technology, MWD discovered one form of PFAS – perfluorohexanoic acid (PFHxA) – in the drinking water supply. This substance is **NOT** a known carcinogen and is not yet regulated in the U.S.

Legislation to regulate PFAS is currently in the works at both the state and federal levels. As testing and analytical methods continue to improve, so does our knowledge of these substances and their effects on humans. LVMWD is staffed with professionals who are committed to staying up to date on this information to ensure we continue to provide reliable water that meets or exceeds the strictest water quality standards in the nation. Our customers can rest assured knowing their taps deliver the highest quality water at the best value.

Be sure to follow LVMWD on Facebook, Twitter @lvmwd and Instagram @LasVirgenes_MWD to join the conversation.

Las Virgenes Municipal Water District provides potable water, wastewater treatment, recycled water and biosolids composting to more than 75,000 residents in the cities of Agoura Hills, Calabasas, Hidden Hills, Westlake Village, and unincorporated areas of western Los Angeles County.

LVMWD CUSTOMERS ANSWER THE CALL

Over the course of the last year, you've been repeatedly asked to do more and have consistently delivered. Whether it was reading updates on the drought emergency, changing your irrigation scheduling or just figuring out how to conserve more water, you DID it despite all of the other challenges that life has thrown at us. Here at LVMWD, we are SO thankful and have been right there with you.

The District's response to the drought emergency has garnered international media attention, showcasing all of your hard work and dedication to saving water.

By working together to save water, we've grown closer as a community. Many of you have already changed, or are in the process of changing, your lawns with more climate-appropriate landscaping that can look beautiful and save water. You are embracing the challenge we collectively face by changing your relationship with water and recognizing that it is the most precious of resources.

These changes have stuck! At the time of this writing in June, 87% of customers are within their unique water budgets, the demand for our free compost is as high as ever and customers continue to take advantage of the new educational opportunities the District has offered both in-person and online. Below you will find links and QR codes to resources for customers to help them embrace a water efficient life.

ADVANCED METERS

installed

CUSTOMERS registered to WaterSmart 2022

controllers installed

786,00

GALLONS provided through the Recycled **Water Fill Station**

On behalf of all of us at LVMWD, Thank You!!

RESOURCES FOR CUSTOMERS

Community Resources

LVMWD.com/Conservation

A convenient hub of information for customers looking to embrace a more water efficient way of ife.

Virtual Landscape Classes

LVMWD.com/VirtualLandscapeClasses

Learn how to transform your landscape with FREE classes presented by the Green Gardens Group.

WaterSmart Portal

LVMWD.com/AdvancedMeters

Near real-time water use data and customizable water use alerts and leak notifications.

Discounted Irrigation Controller

LVMWD.com/Rachio

Take the guess work out of your irrigation with custom settings to match current watering restrictions.

Free Recycled Water

LVMWD.com/RWFillStation

Free recycled water for use in your landscape can help it make it through the hot months.

Free Compost

LVMWD.com/Community-Compost

Free compost helps retain moisture in your landscape and delivers critical nutrients to plants.

LVMWD CUSTOMER

2022 LVMWD WATER QUALITY REPORT PUBLISHED JUNE 2023

WATER QUALITY - THE SAME IN ANY LANGUAGE

This report contains important information about your drinking water. Translate it or speak with someone who understands it.

SPANISH

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

HEBREW

הדו"ח הזה מכיל מידע חשוב לגבי מי השתייה שלך תרגם את הדו"ח או דבר עם מישהו שמבין אותו

FARS

تمبتوانیدابن اطاعه ترا بزین انگلیسی اطلاعه تهجمی اجتریه "ب" قیمیدنی است. اگر ابرای همدیه فدرسی ترجمه کنند. ابن اطلاعیه شمل بخوانیدلدف. از کسی که مینو اندیدی بگیر بدته طدلب ر

CHINESE

这份报告中有些重要的信息, 讲到关于您所在社区的水的品质。请您找人翻译一下,或者请能看得懂这份报告的朋友给您解释一下。

JAPANESE

この資料には、あなたの飲料水についての大切な情報が書かれています。内容をよく理解するために、日本語に翻訳して読むか説明を受けてください。

FOR MORE INFORMATION

LVMWD encourages you to stay informed about your water. Sign up for eNotification at LVMWD.com/eNotification to receive information on a variety of topics that interest you. Be sure to check the website frequently for timely information on water conservation and other topics.

The District publishes *The e-Current Flow* on our website at <u>LVMWD.com/e-Current-Flow</u>. The customer newsletter is also delivered with your bill.

The LVMWD Board of Directors meets at 9 a.m. on the first and third Tuesday of each month. These meetings are conducted at District Headquarters, 4232 Las Virgenes Rd., in Calabasas, and are open to the public and live streamed at LVMWD.com/LiveStream

If you wish to speak with someone about your water service please contact us at (818) 251-2200 or e-mail Customer_Service@LVMWD.com.

ADDITIONAL INFORMATION ABOUT DRINKING WATER SAFETY AND STANDARDS CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY - STATE WATER RESOURCES CONTROL BOARD

1001 I St. Sacramento, CA 95814 (916) 449-5577 waterboards.ca.gov/tiny/pws.shtml

U.S. Environmental Protection Agency (USEPA)

Office of Ground and Drinking Water 401 M St., SW Washington, DC 20460 (800) 426-4791 epa.gov/safewater

U.S. CENTER FOR DISEASE CONTROL AND PREVENTION

1600 Clifton Rd. Atlanta, GA 30333 (800) 311-3435 cdc.gov