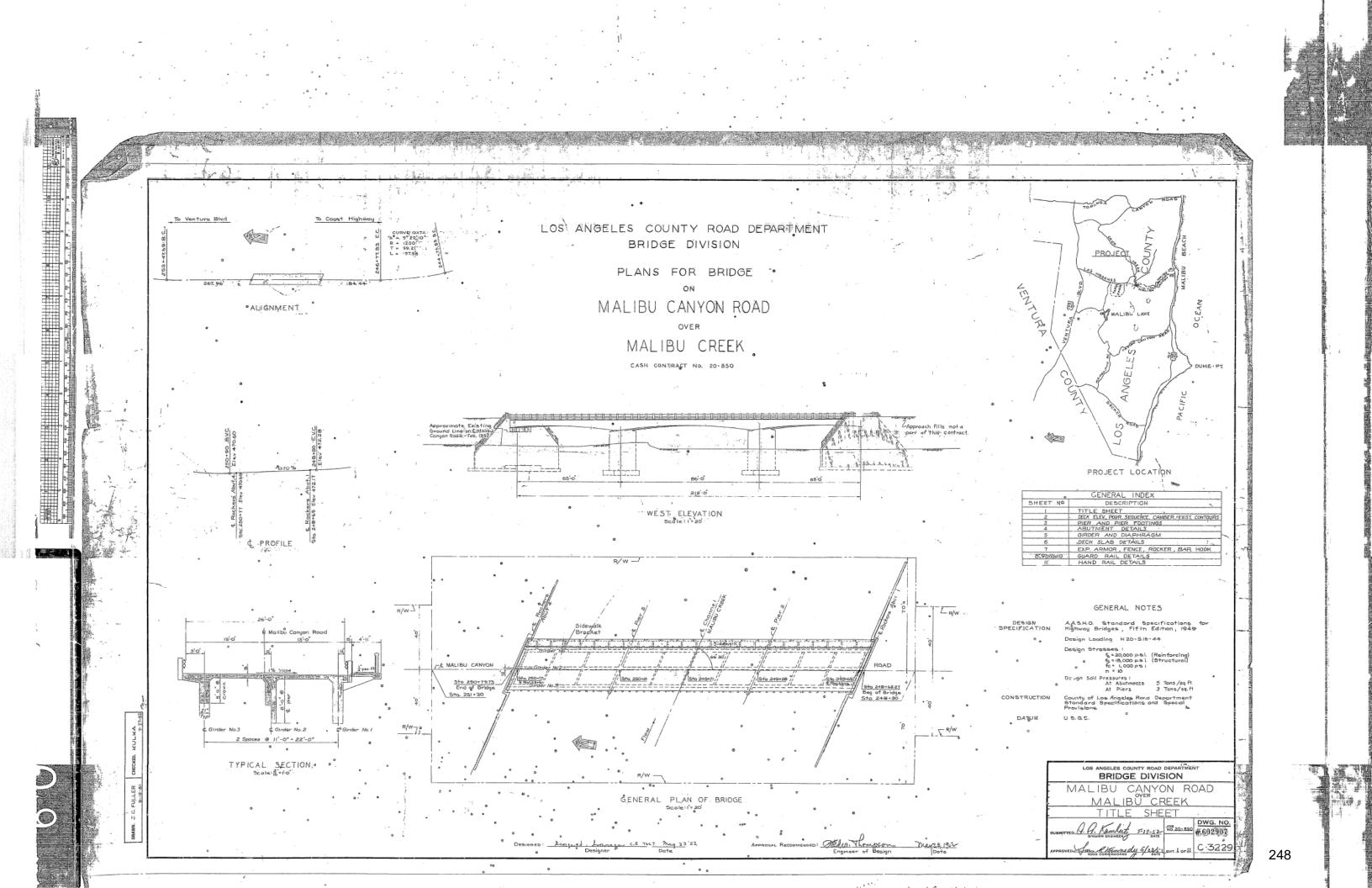
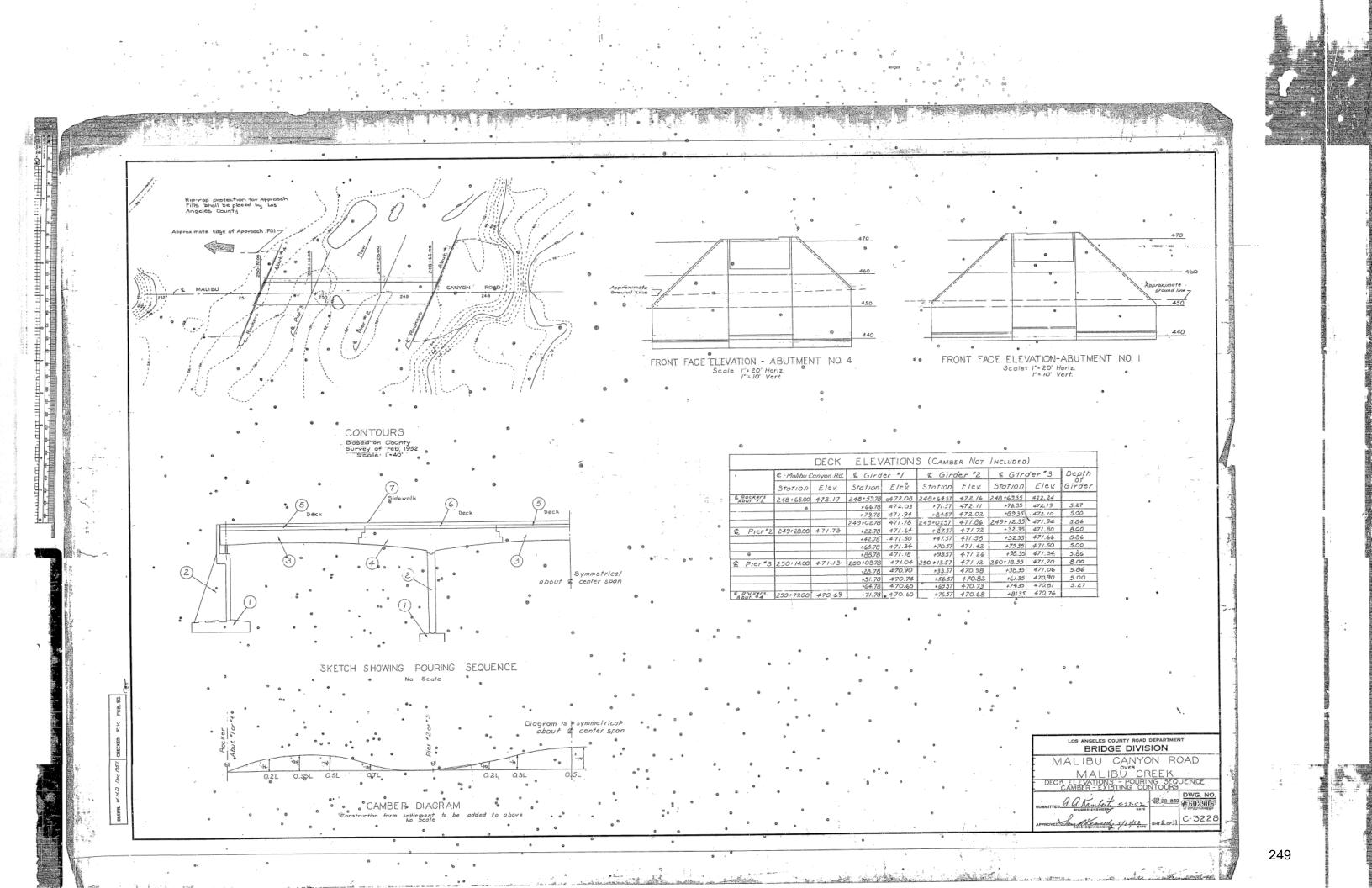
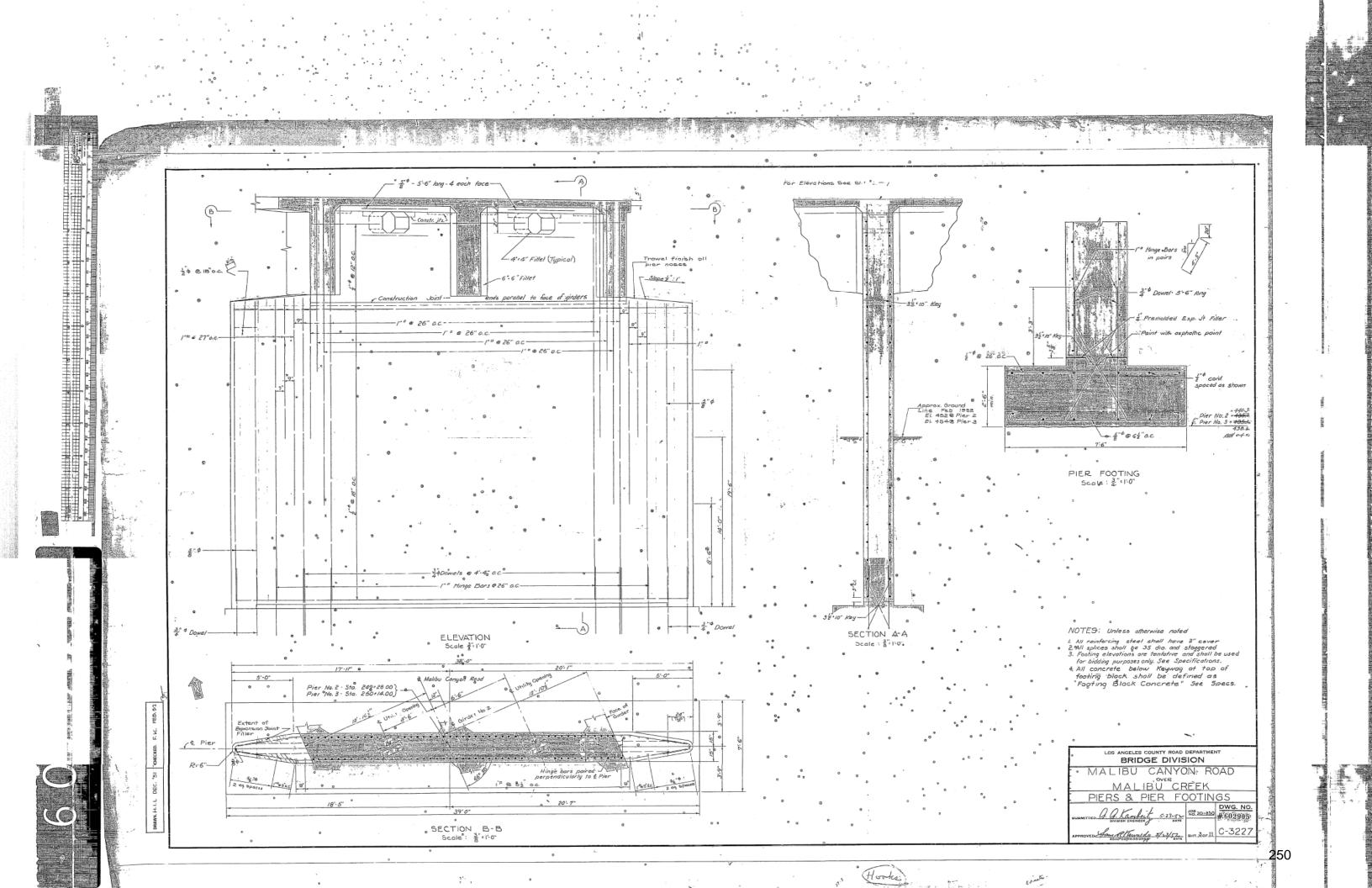
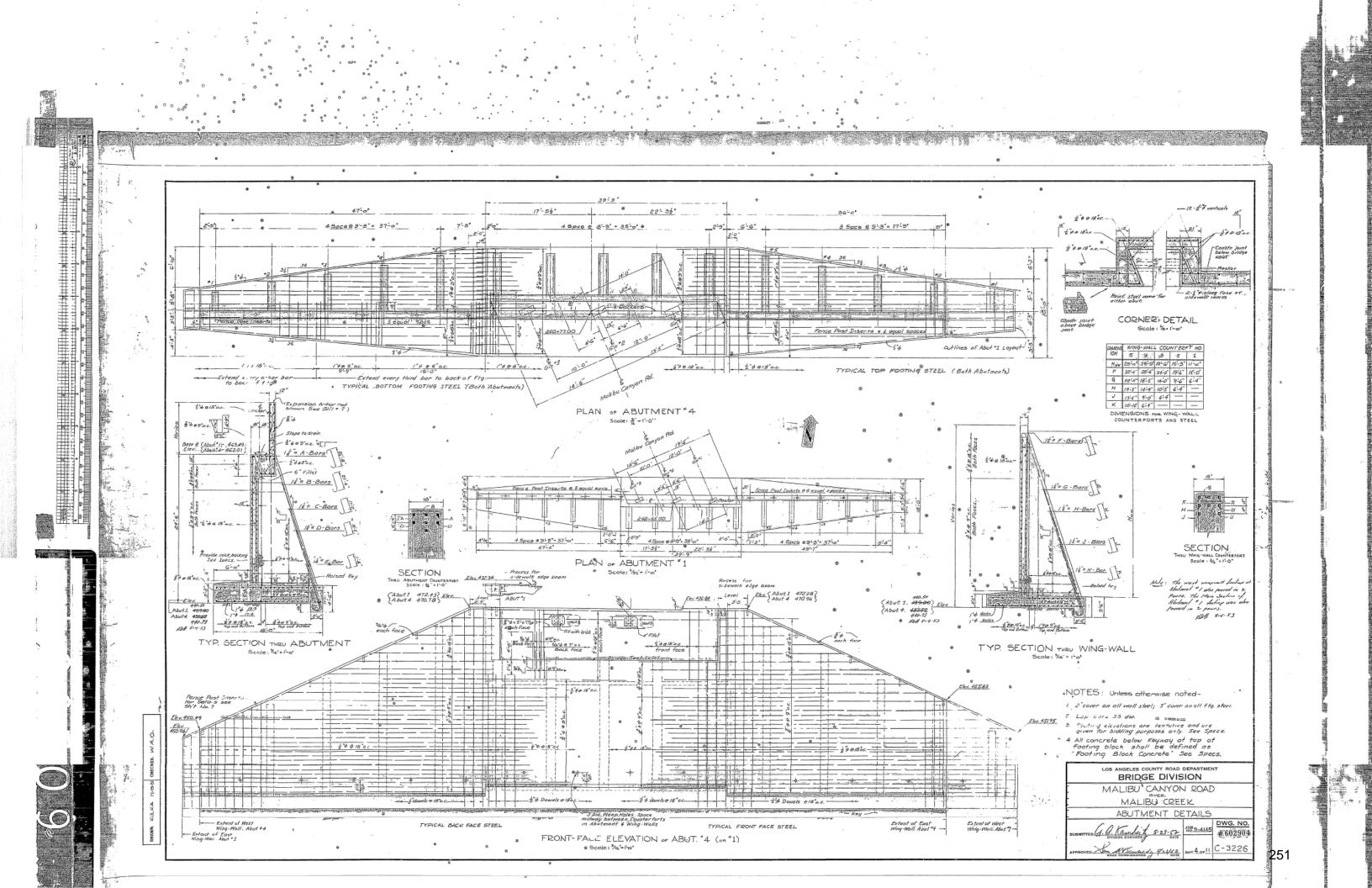


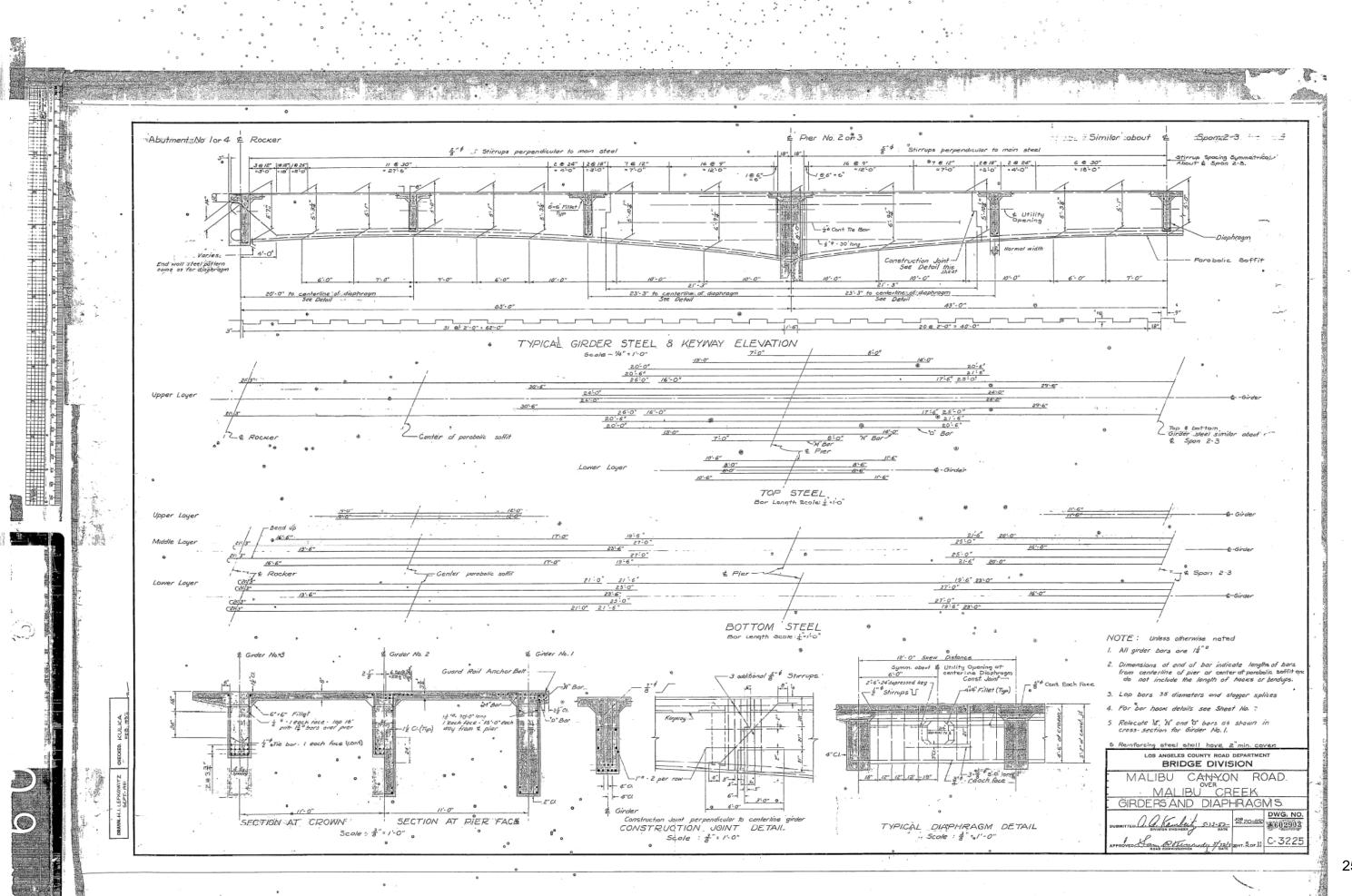
				Y								
13+60	13+80	14+00	14+20	14+40	14+60	14+80	15+00	15+20	15+40	15+60	15+80	16+(

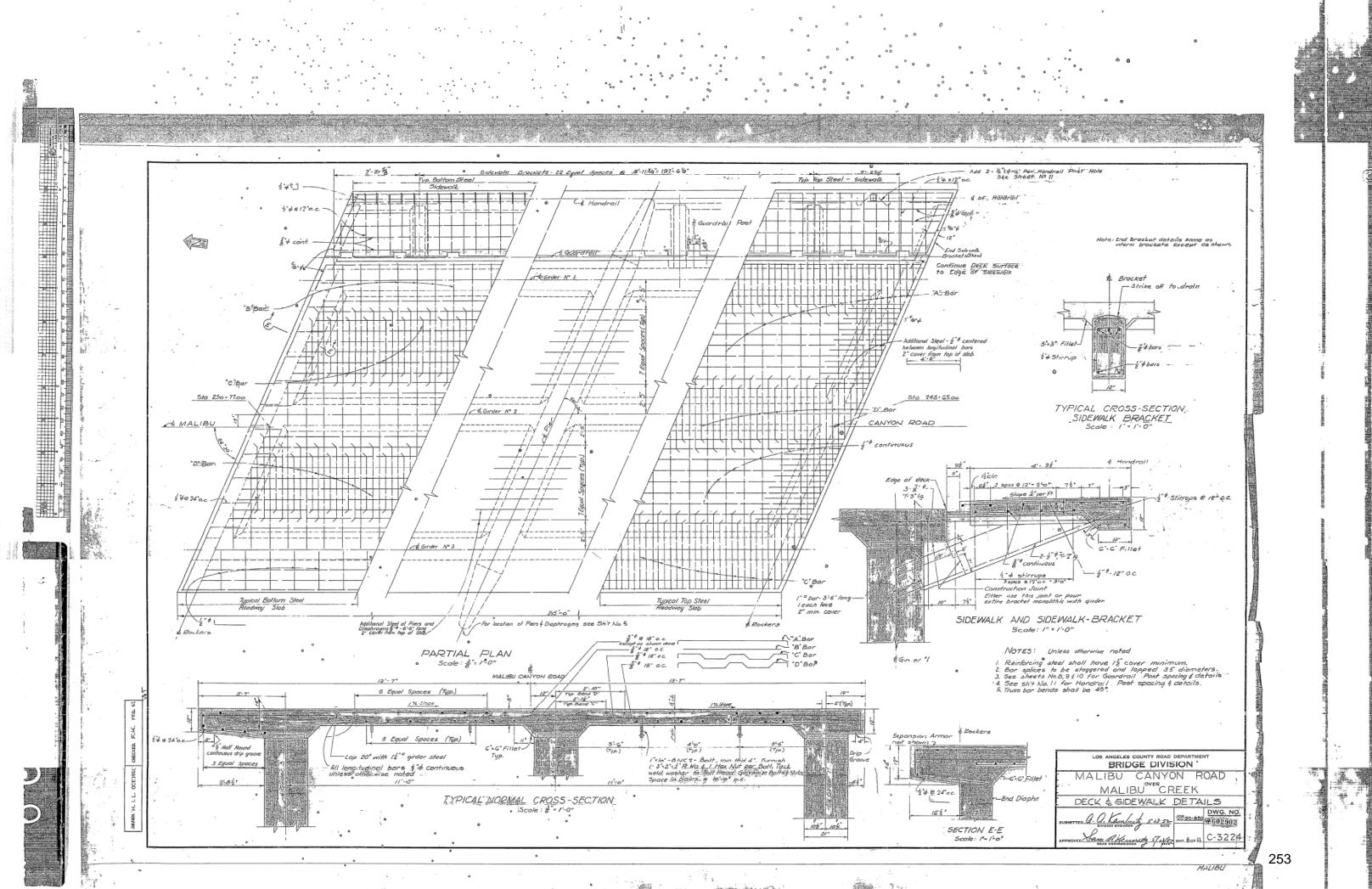

00	14-	20	

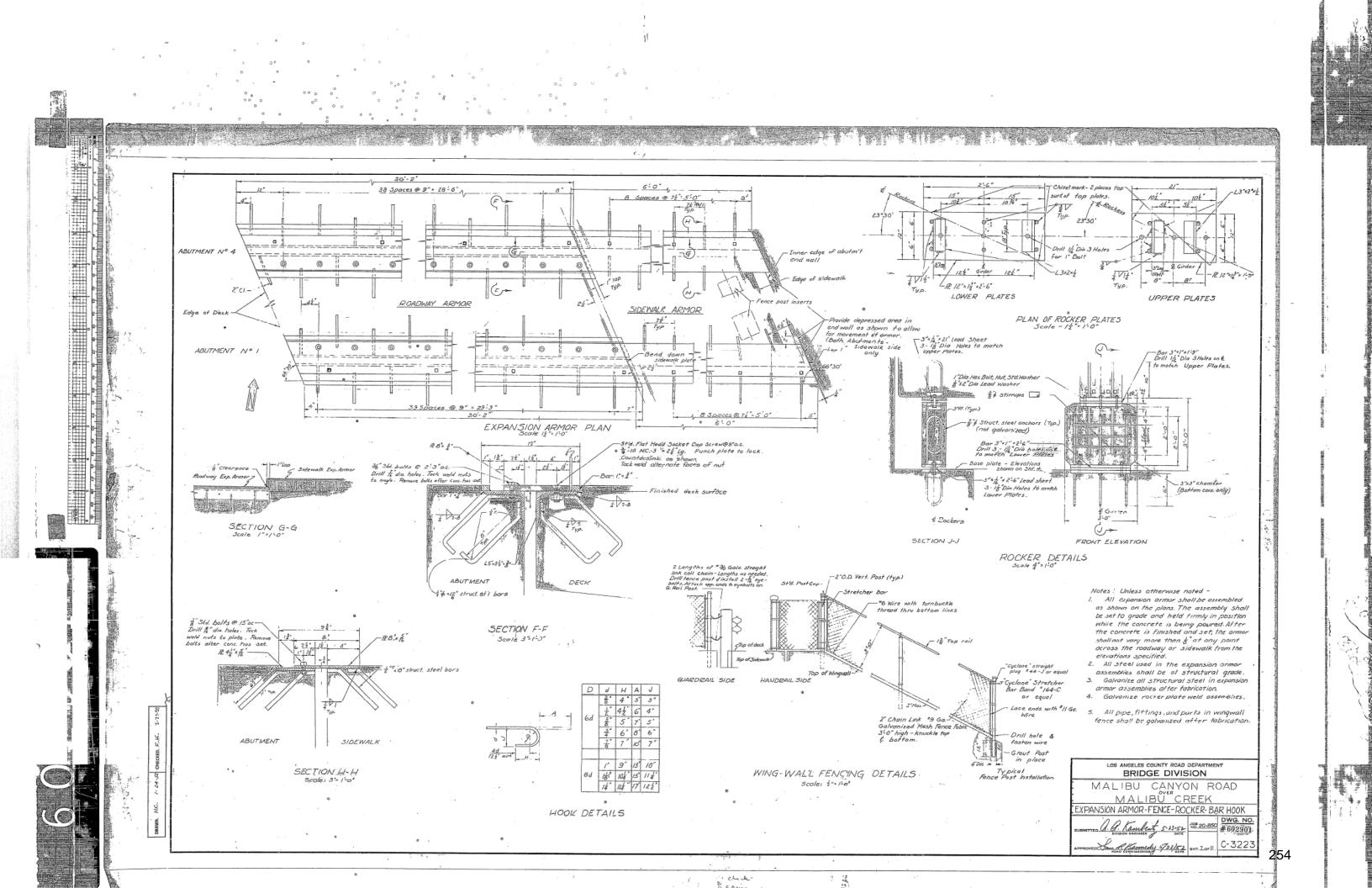

FIGURE 4

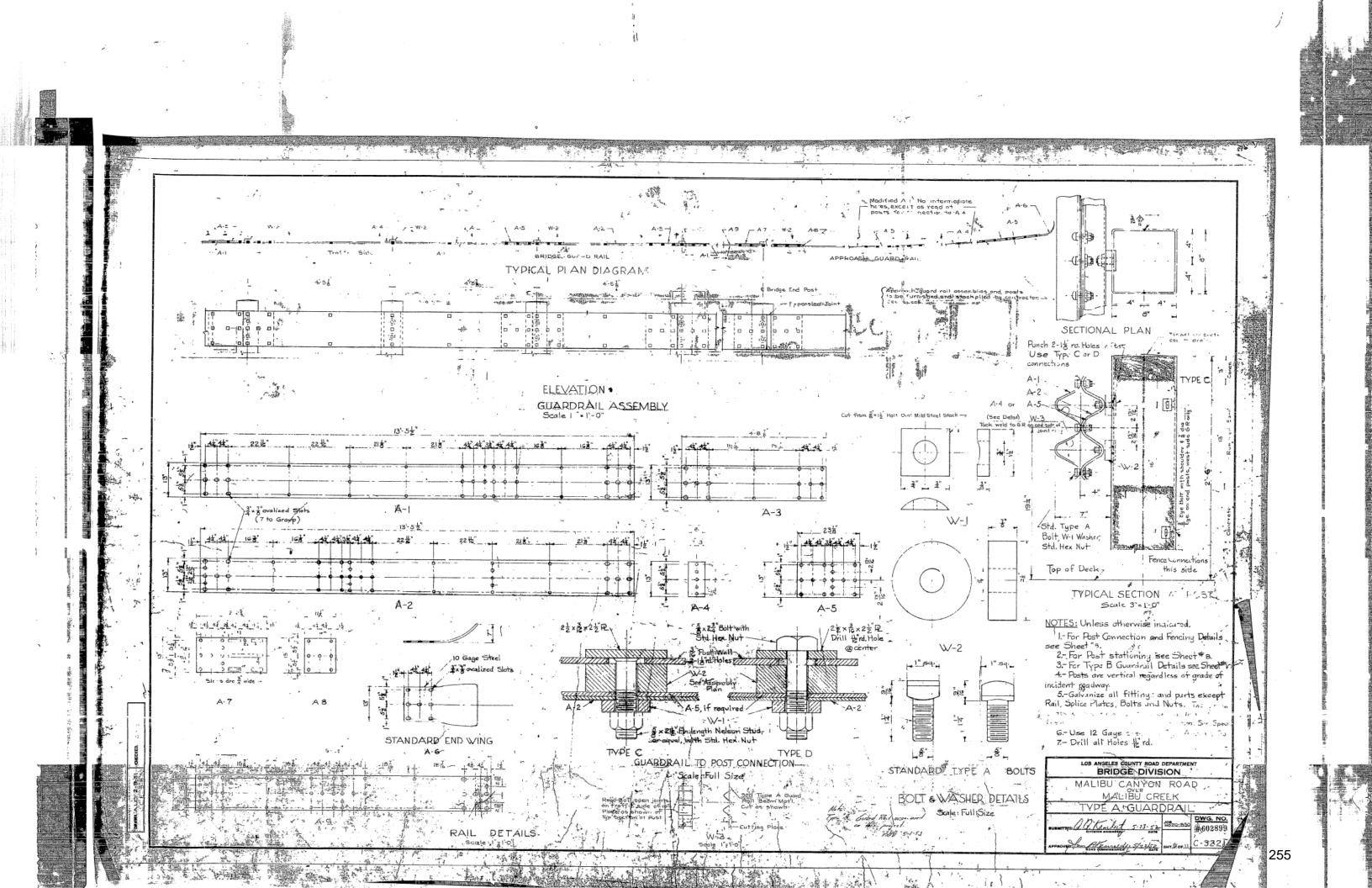

Appendix D

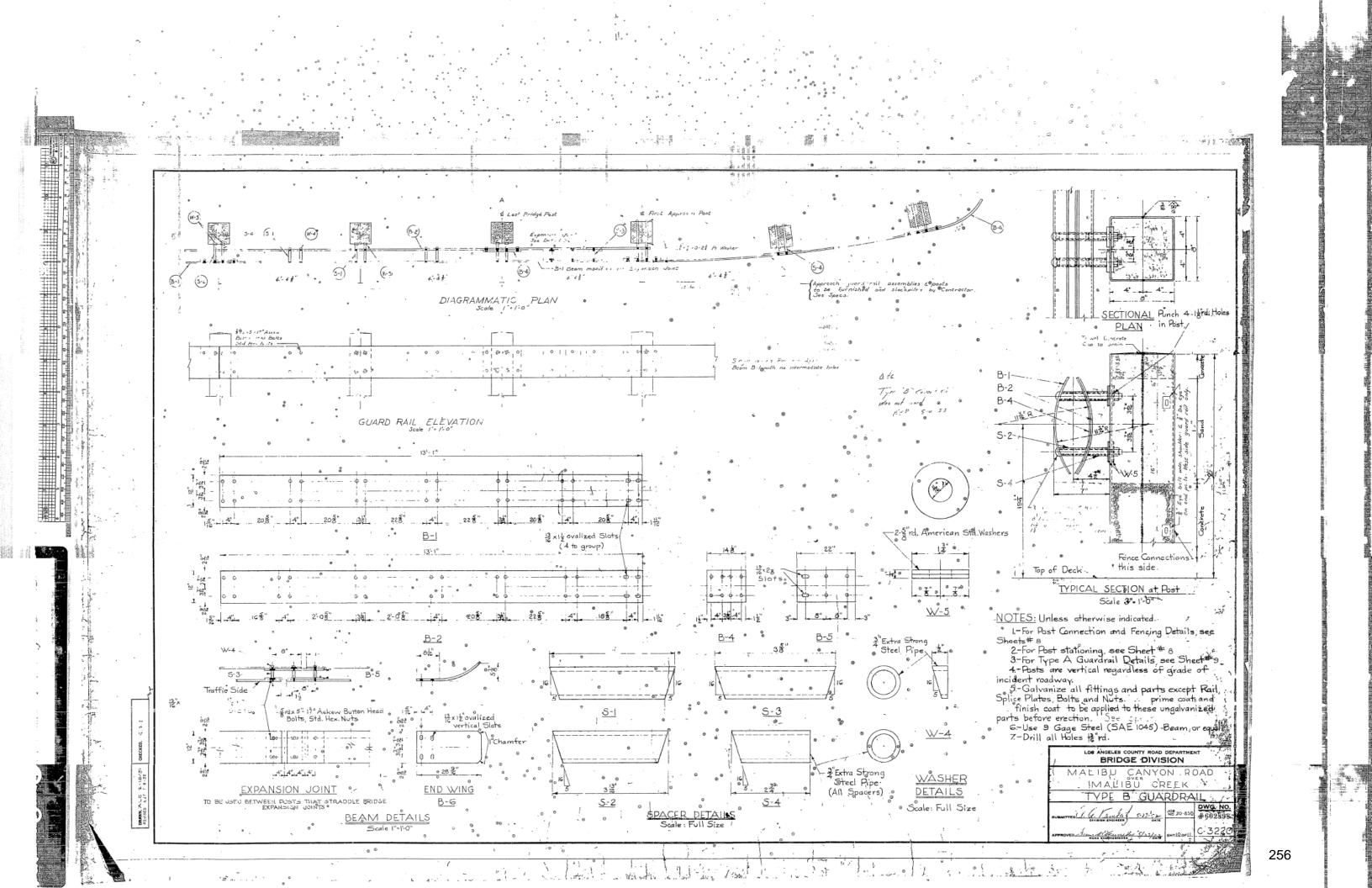

As-Built Drawings of Existing Bridge

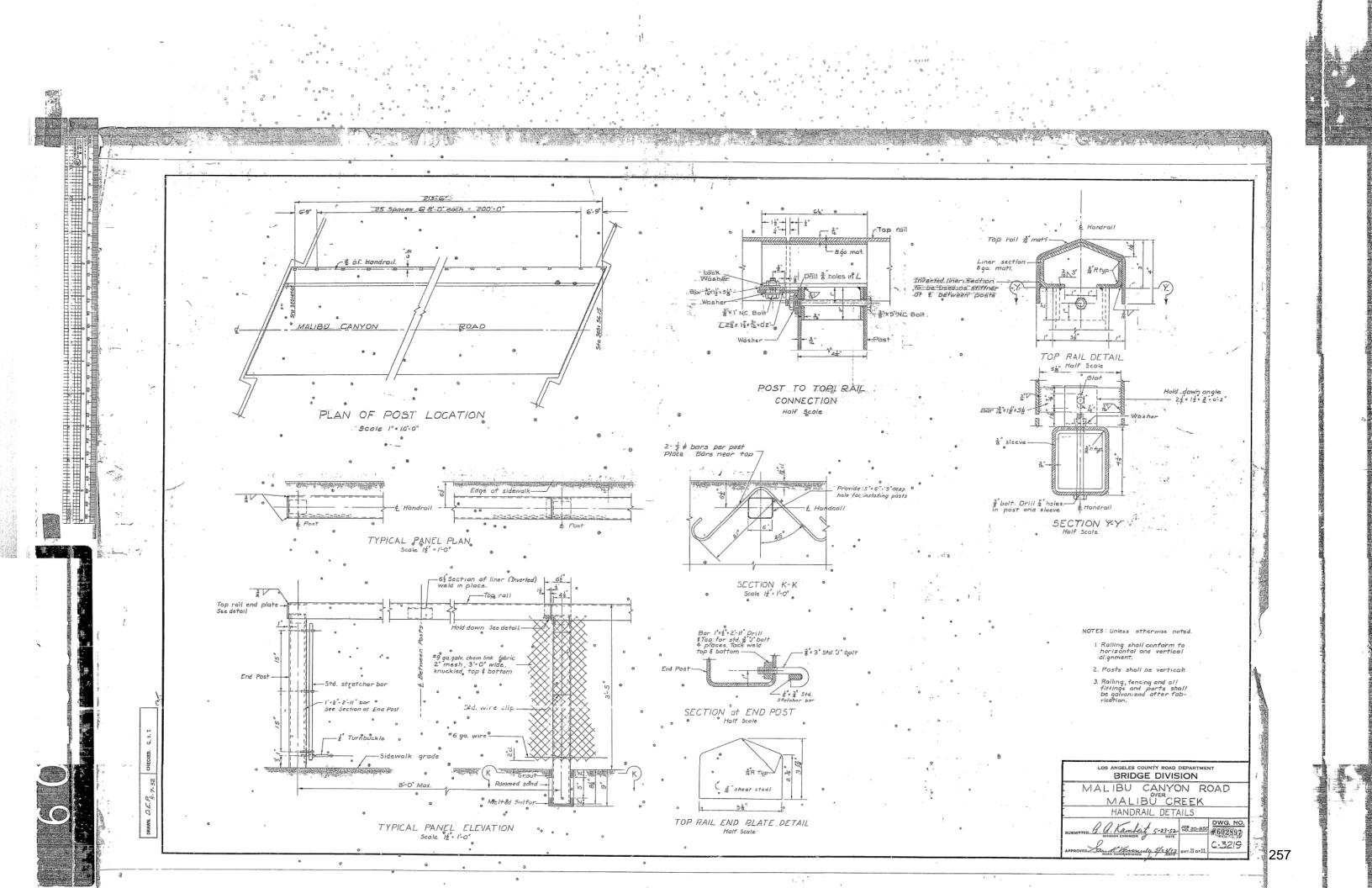

and LACPW's 60% Designs of Proposed Replacement Bridge

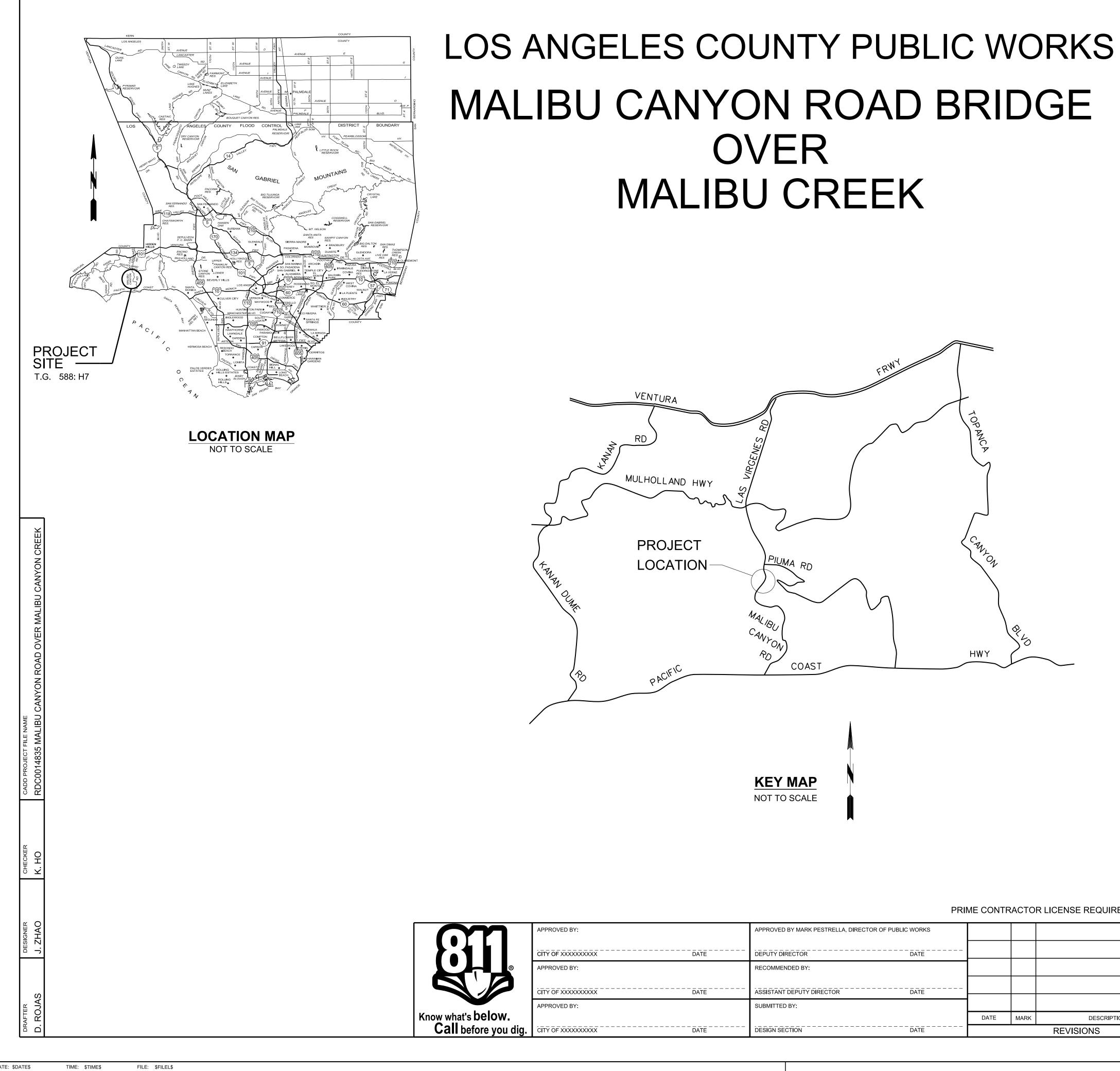






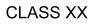




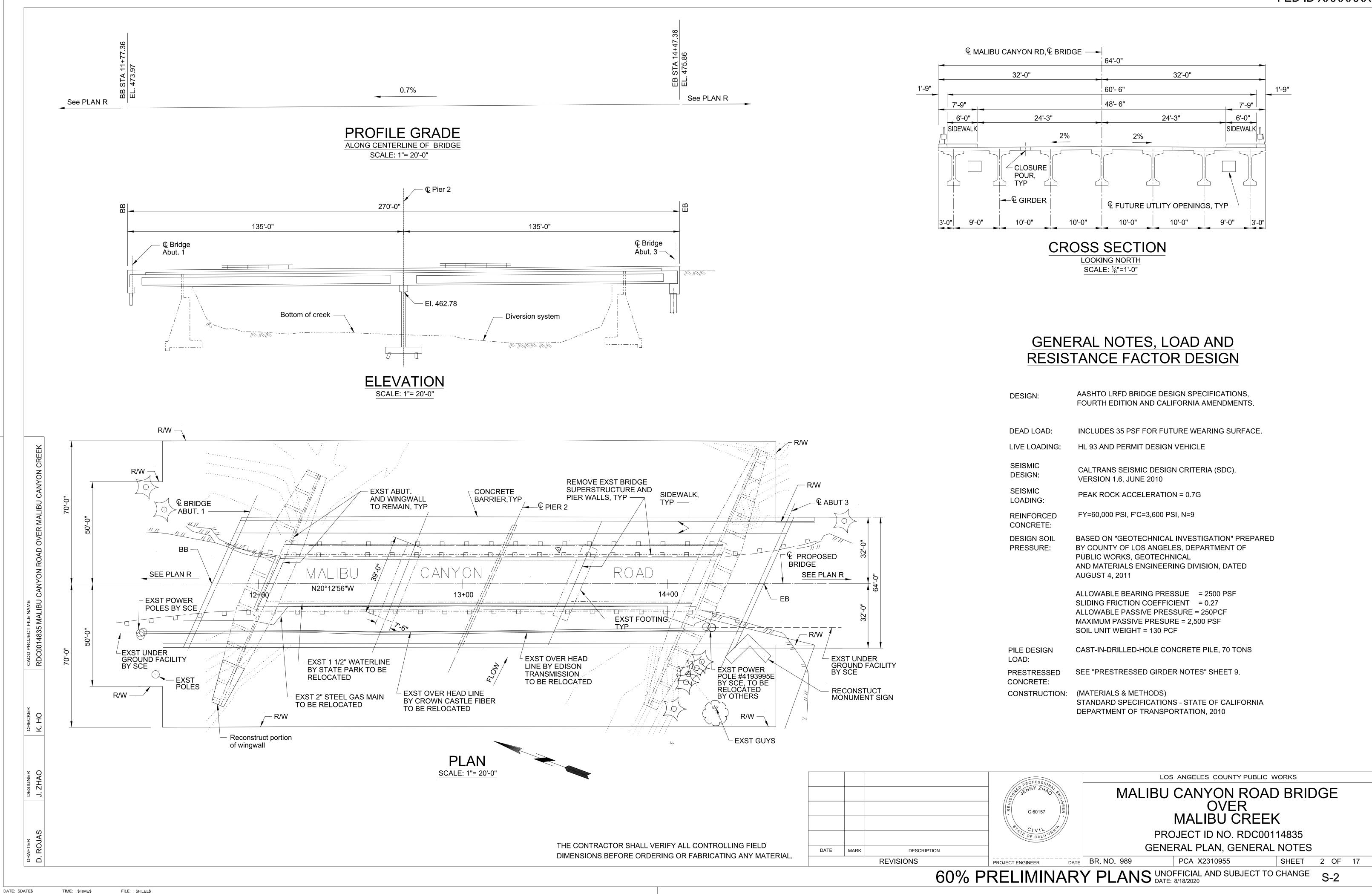


DATE: \$DATE\$

TIME: \$TIME\$

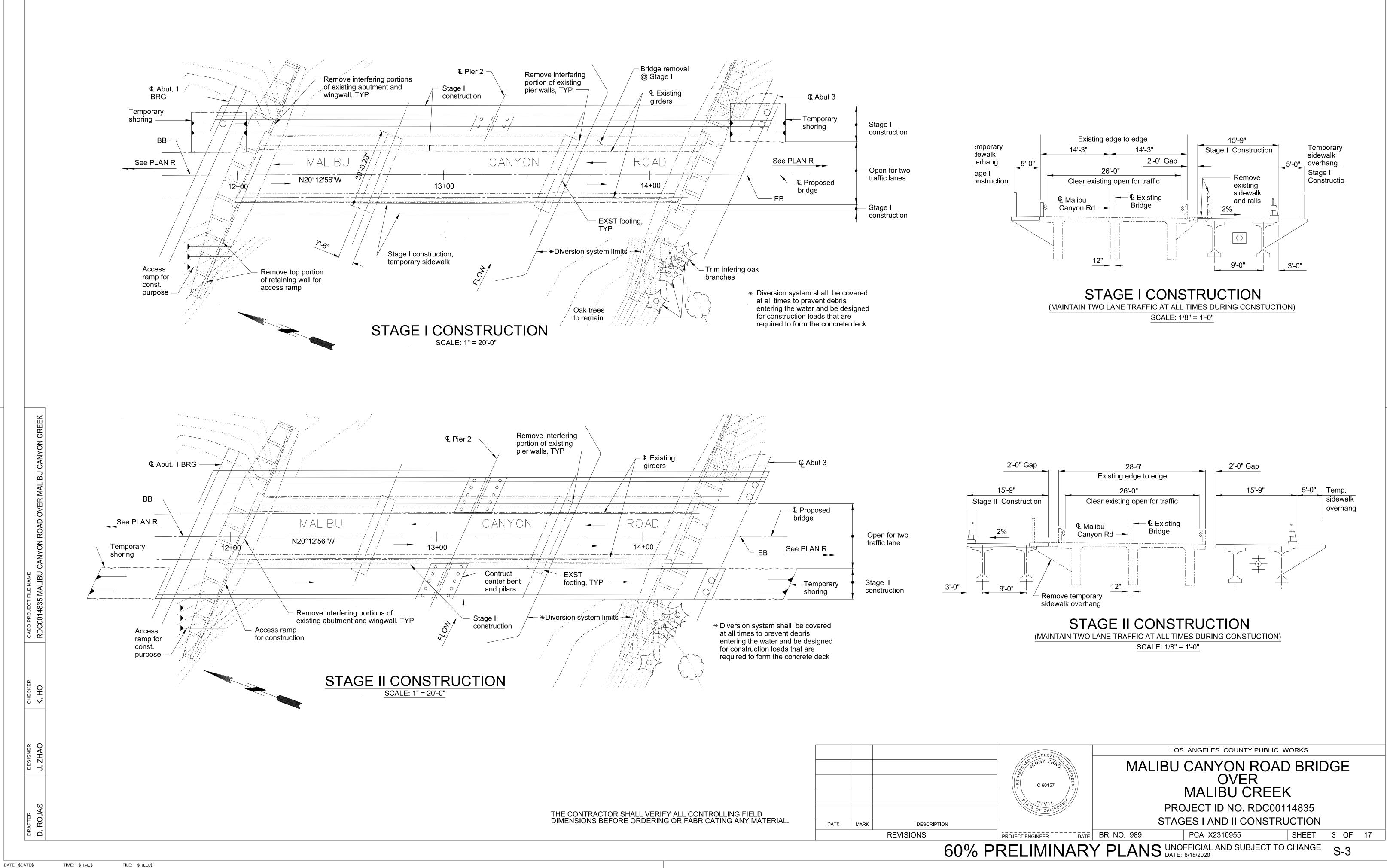

PRIME CONTRACTOR LICENSE REQUIRED: CLASS XX

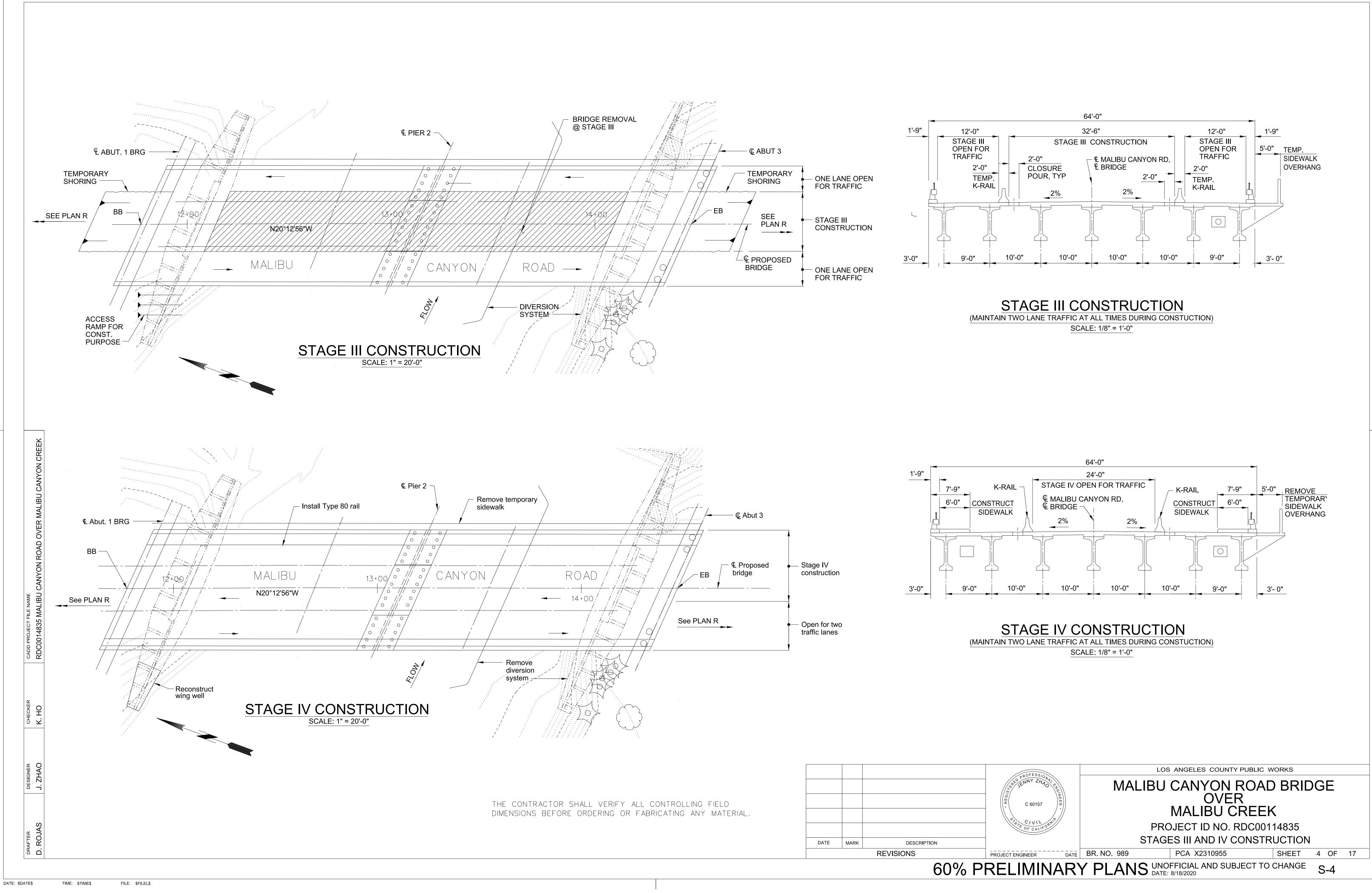
							0
dig.		DATE	DESIGN SECTION	DATE			REVISIONS
•					DATE	MARK	DESCRIPTION
	APPROVED BY:		SUBMITTED BY:				
		DATE	ASSISTANT DEPUTY DIRECTOR	DATE			
®	APPROVED BY:		RECOMMENDED BY:				
		 DATE		 DATE			
	APPROVED BY:		APPROVED BY MARK PESTRELLA, DIRECTOR OF PU	BLIC WORKS			

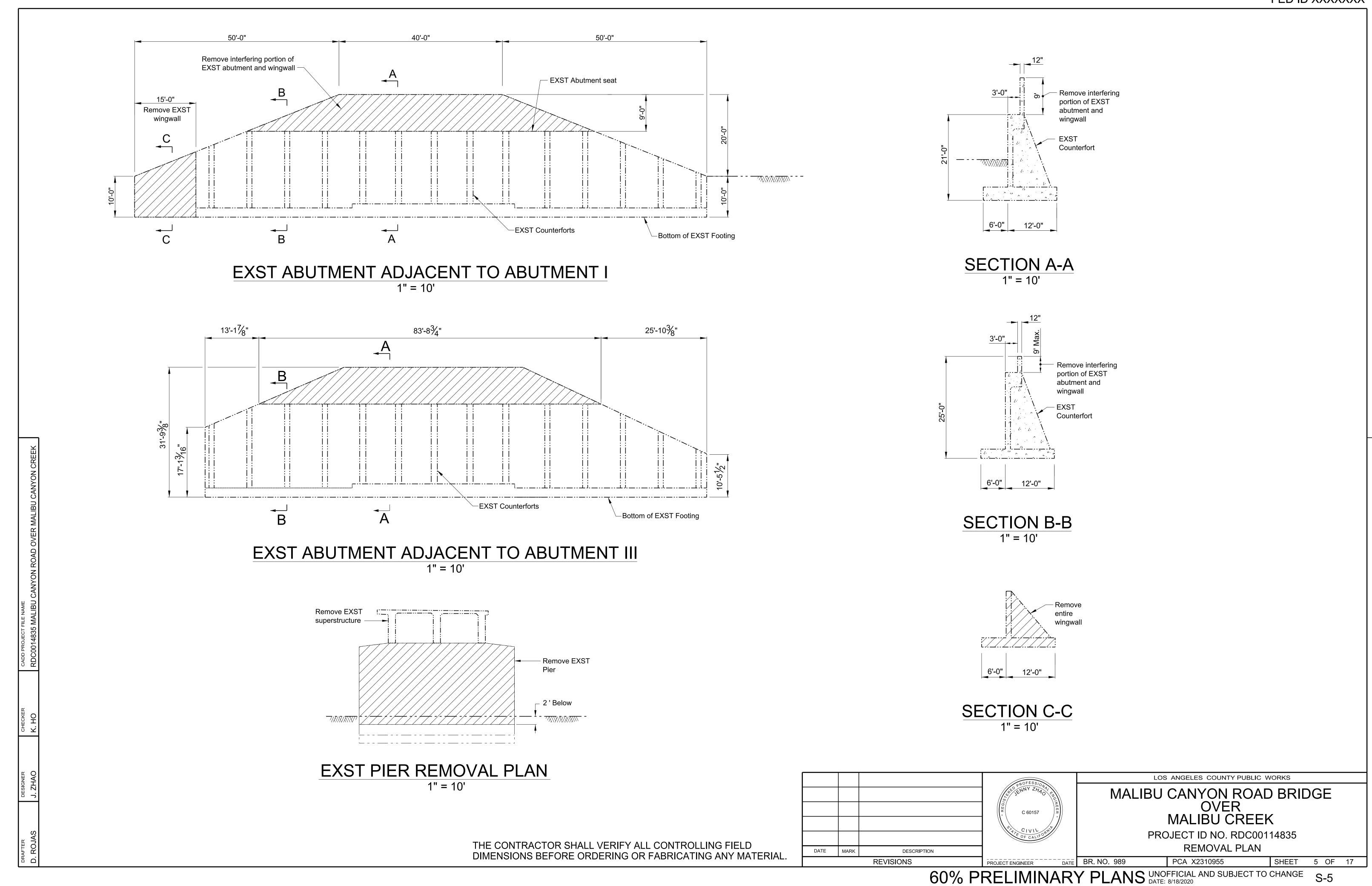

INDEX TO PROJECT PLANS

SHEET NUMBER DESCRIPTION

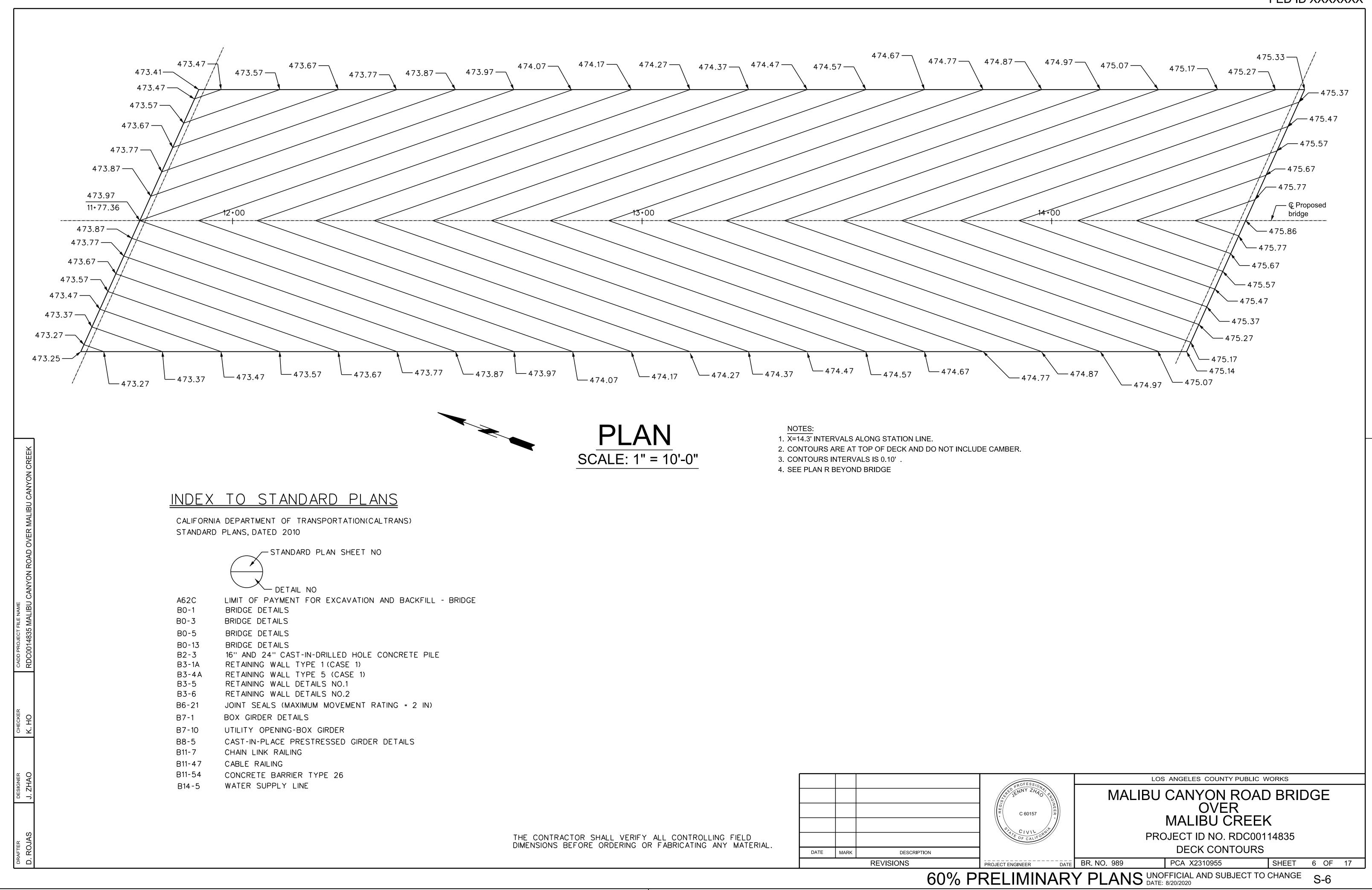
- TITLE SHEET
- GENERAL PLAN
- **STAGE I AND II CONSTRUCTION** STAGE III AND IV CONSTRUCTION
- **REMOVAL PLANS**
- DECK CONTOURS
- FOUNDATION PLAN
- **ABUTMENT PLAN1**
- **ABUTMENT PLAN 3**
- ABUTMENT DETAIL PIERS DETAILS
- TYPICAL SECTION
- GIRDER LAYOUT 13
- GIRDER DETAILS 14
- 15 PRESTRESSED GIRDER DETAILS
- GIRDER AND DIAPHRAGM DETAILS
- LOGS OF BORINGS 17
- PLAN RD ROADWAY APPROACH PLANS PLAN TC TRAFFIC CONTROL PLANS




LOS ANGELES COUNTY PUBLIC WORKS MALIBU CANYON ROAD BRIDGE OVER MALIBU CREEK PROJECT ID NO. RDC0014835 TITLE SHEET PCA X2310955 SHEET 1 OF 17 PROJECT ENGINEER DATE BR. NO. 989 60% PRELIMINARY PLANS UNOFFICIAL AND SUBJECT TO CHANGE DATE: 8/18/2020 S-1



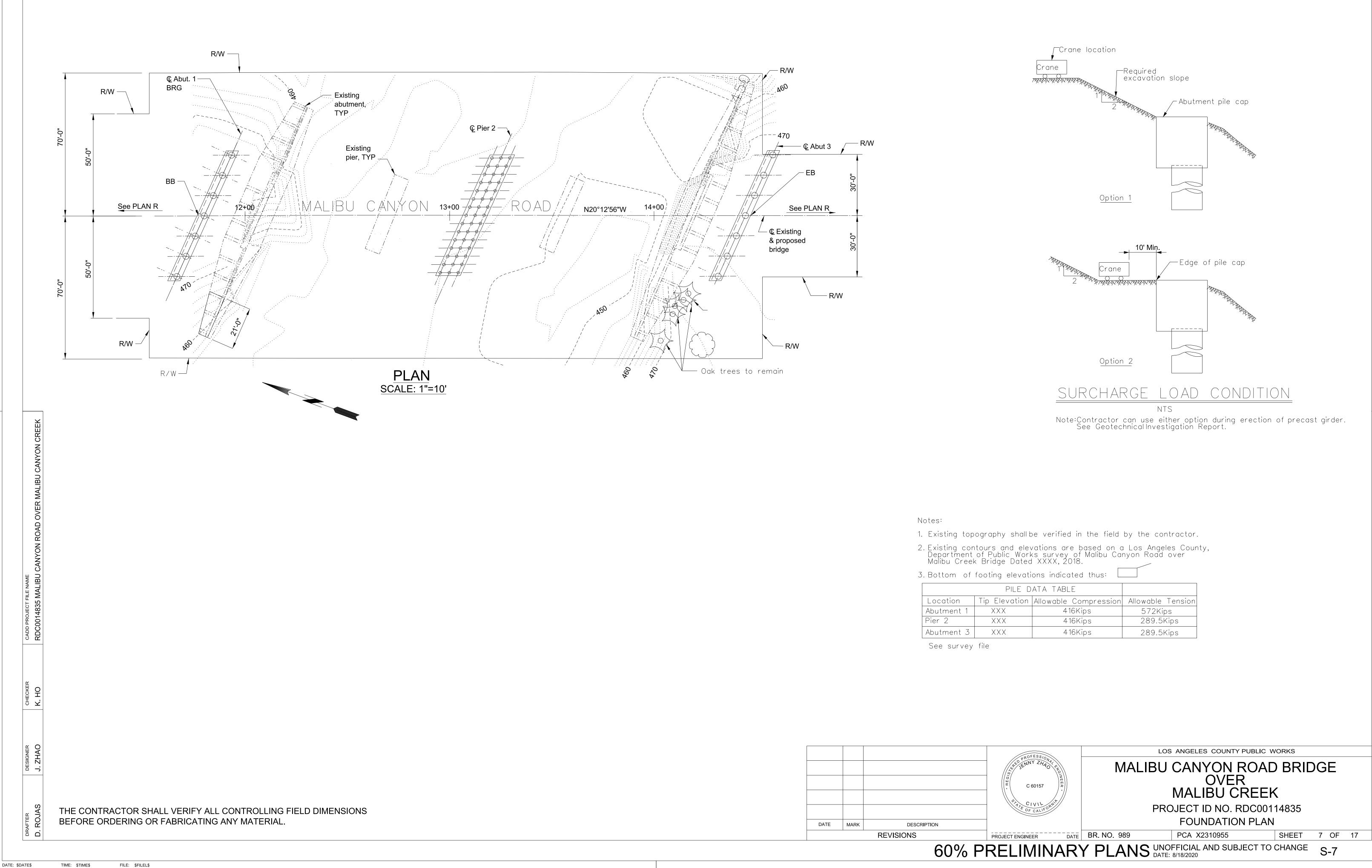
DESIGN:	AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, FOURTH EDITION AND CALIFORNIA AMENDMENTS.
DEAD LOAD:	INCLUDES 35 PSF FOR FUTURE WEARING SURFACE.
LIVE LOADING:	HL 93 AND PERMIT DESIGN VEHICLE
SEISMIC DESIGN:	CALTRANS SEISMIC DESIGN CRITERIA (SDC), VERSION 1.6, JUNE 2010
SEISMIC LOADING:	PEAK ROCK ACCELERATION = 0.7G
REINFORCED CONCRETE:	FY=60,000 PSI, F'C=3,600 PSI, N=9
DESIGN SOIL PRESSURE:	BASED ON "GEOTECHNICAL INVESTIGATION" PREPARED BY COUNTY OF LOS ANGELES, DEPARTMENT OF PUBLIC WORKS, GEOTECHNICAL AND MATERIALS ENGINEERING DIVISION, DATED AUGUST 4, 2011
	ALLOWABLE BEARING PRESSUE = 2500 PSF SLIDING FRICTION COEFFICIENT = 0.27 ALLOWABLE PASSIVE PRESSURE = 250PCF MAXIMUM PASSIVE PRESURE = 2,500 PSF SOIL UNIT WEIGHT = 130 PCF
PILE DESIGN LOAD:	CAST-IN-DRILLED-HOLE CONCRETE PILE, 70 TONS
PRESTRESSED CONCRETE:	SEE "PRESTRESSED GIRDER NOTES" SHEET 9.
CONSTRUCTION:	(MATERIALS & METHODS) STANDARD SPECIFICATIONS - STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION, 2010

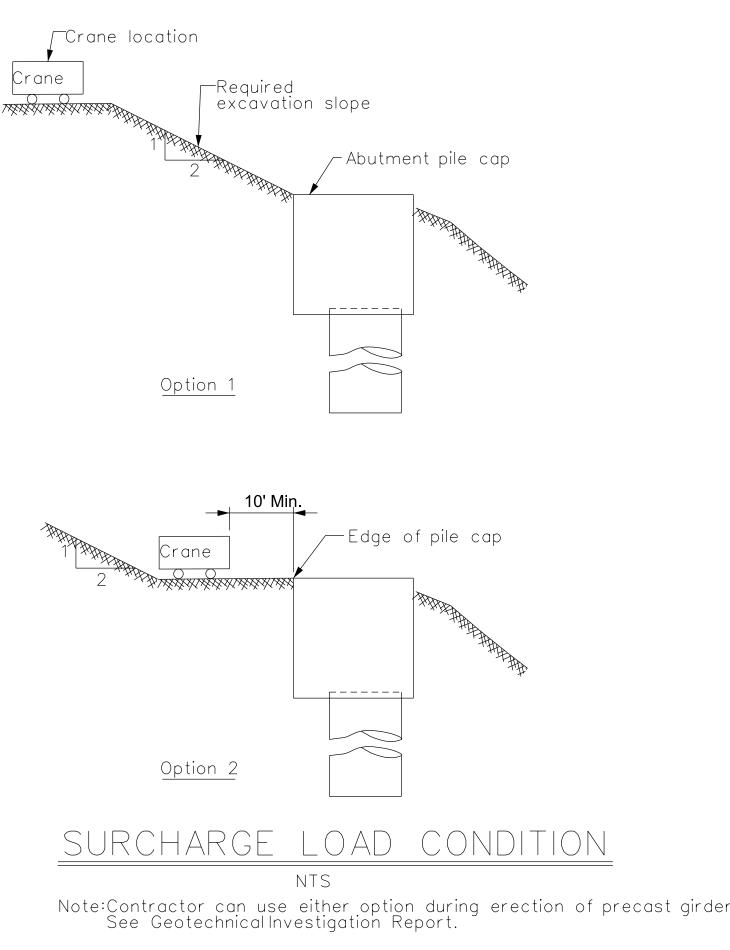


261

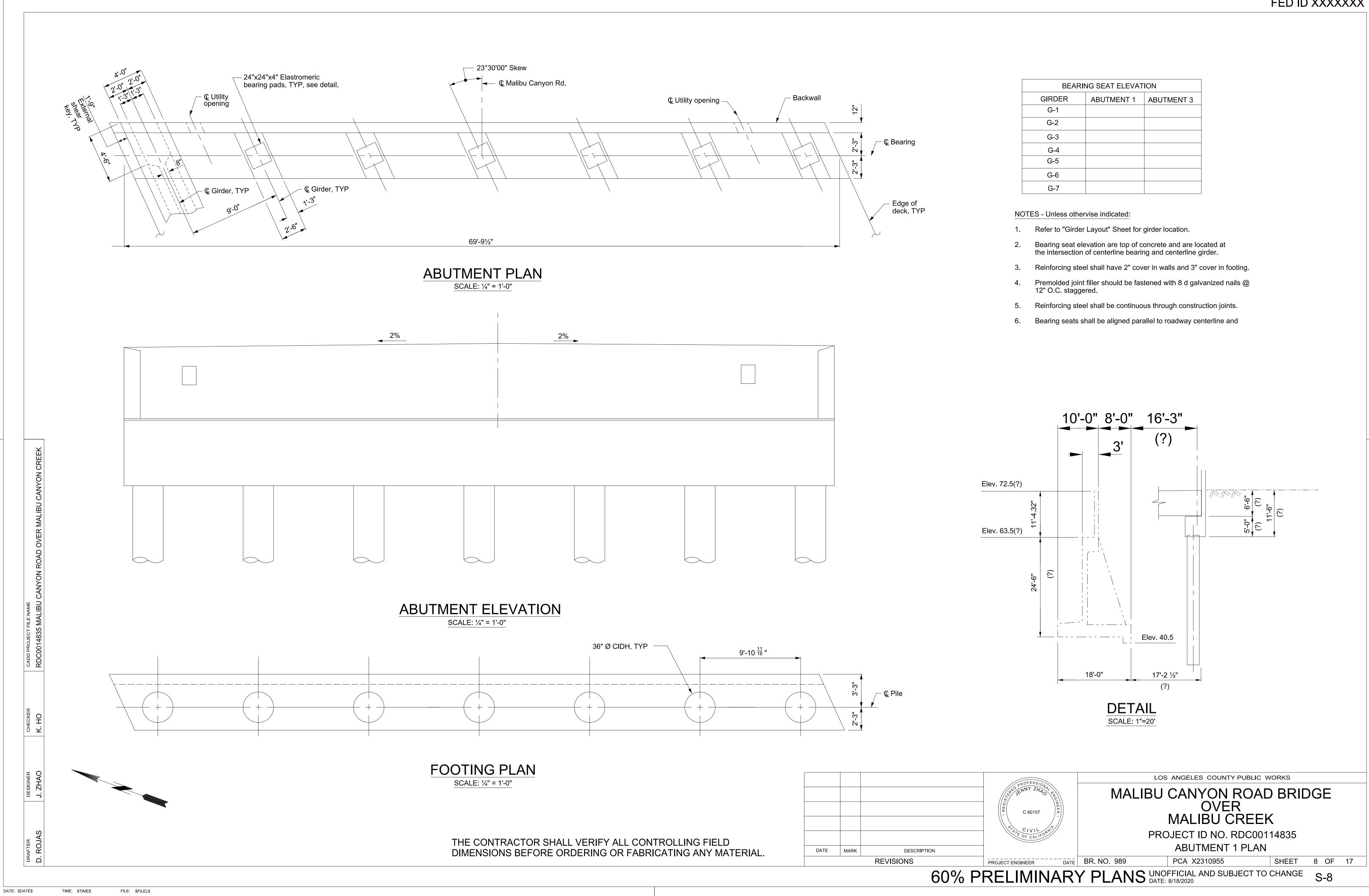
FILE: \$FILEL\$ TIME: \$TIME\$

DATE: \$DATE\$

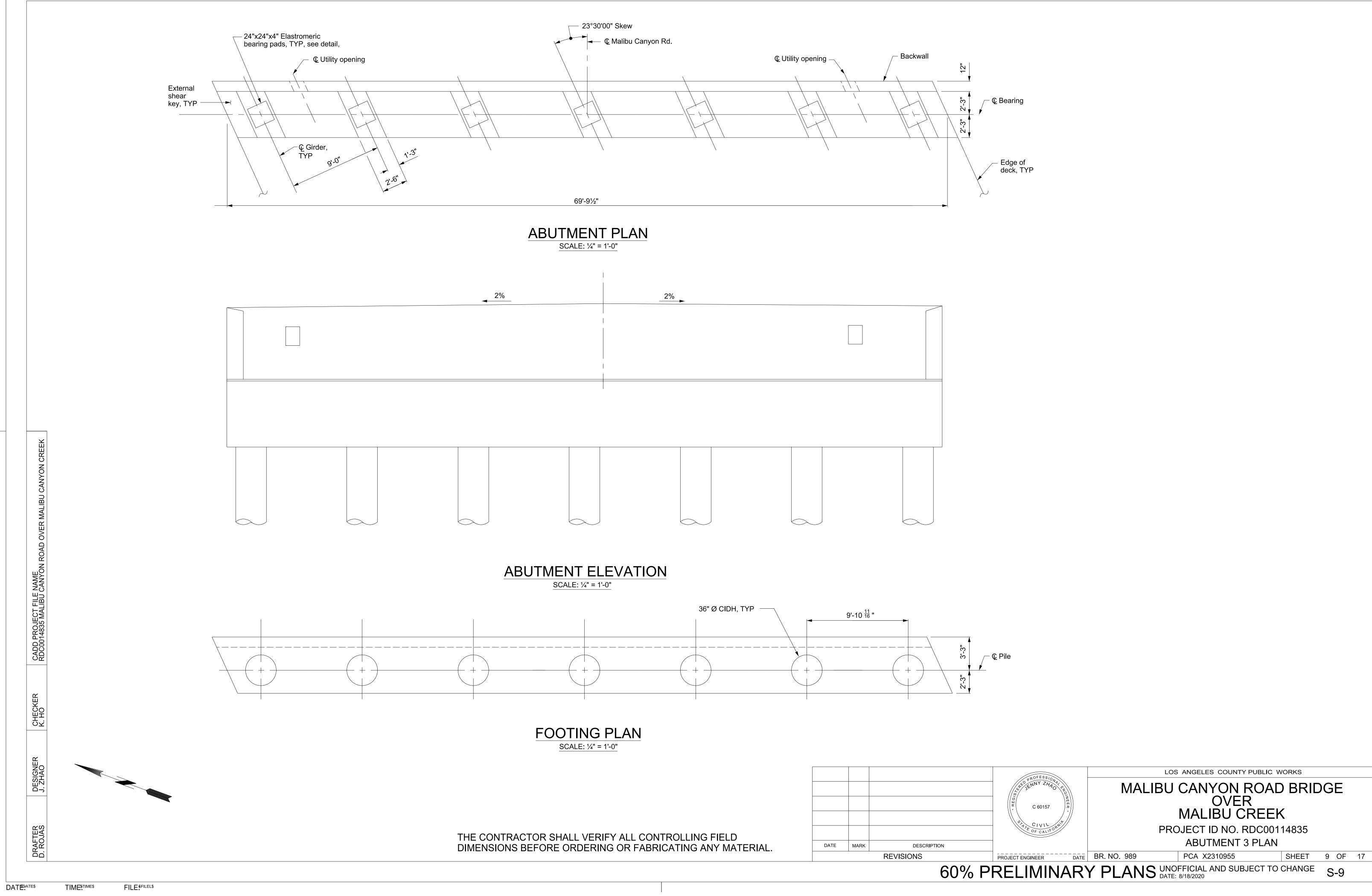


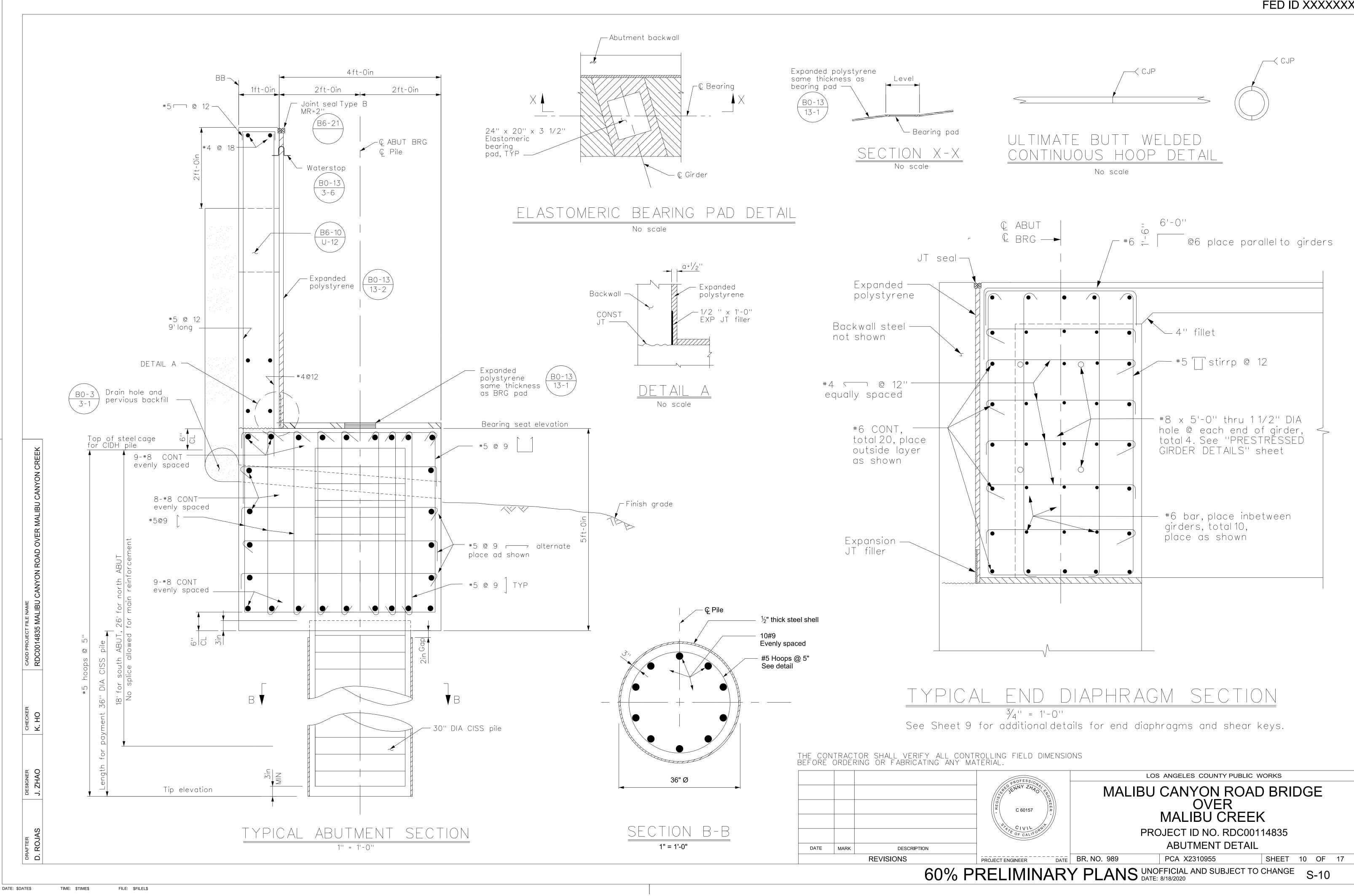

DATE: \$DATE\$

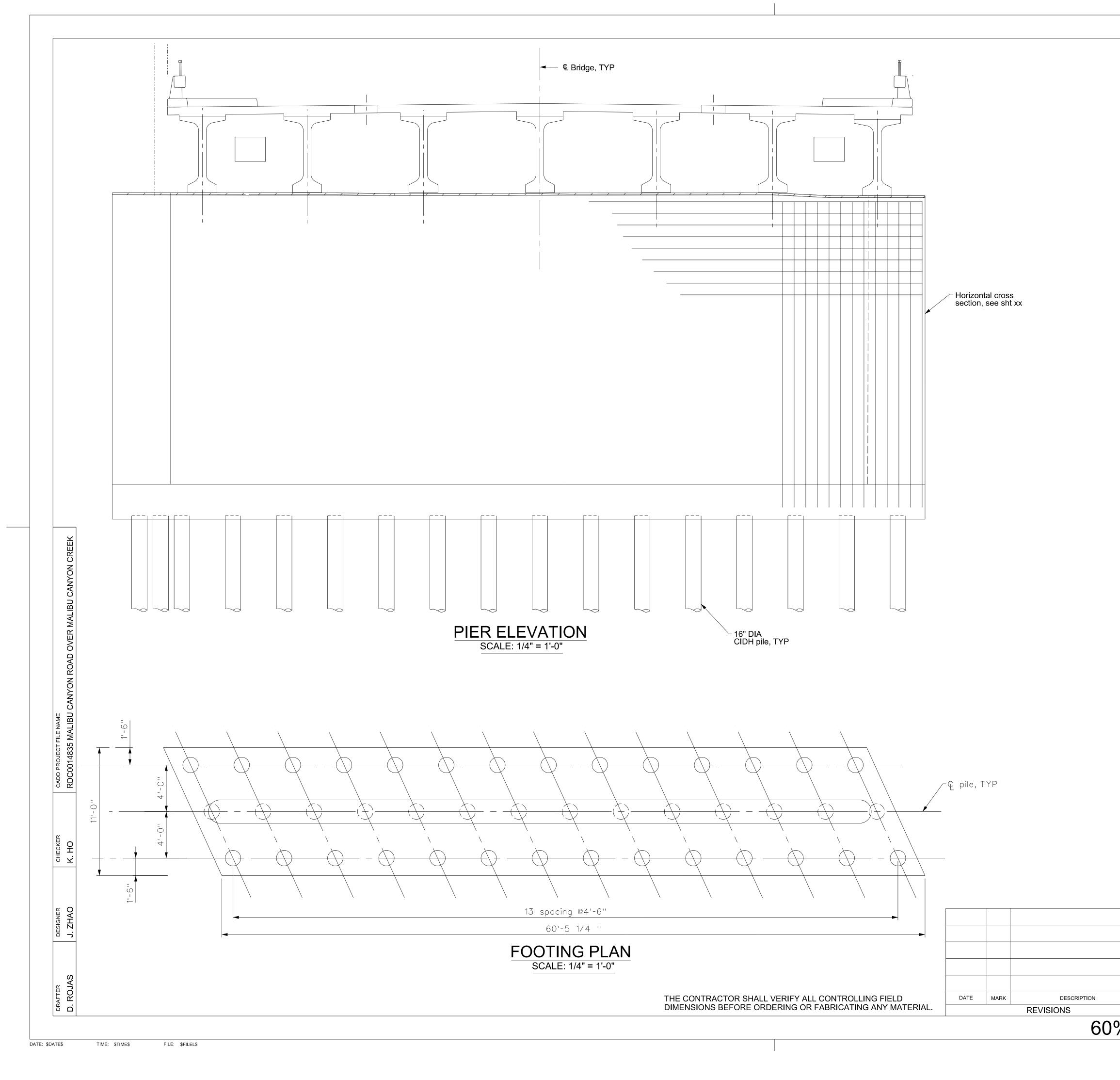
TIME: \$TIME\$

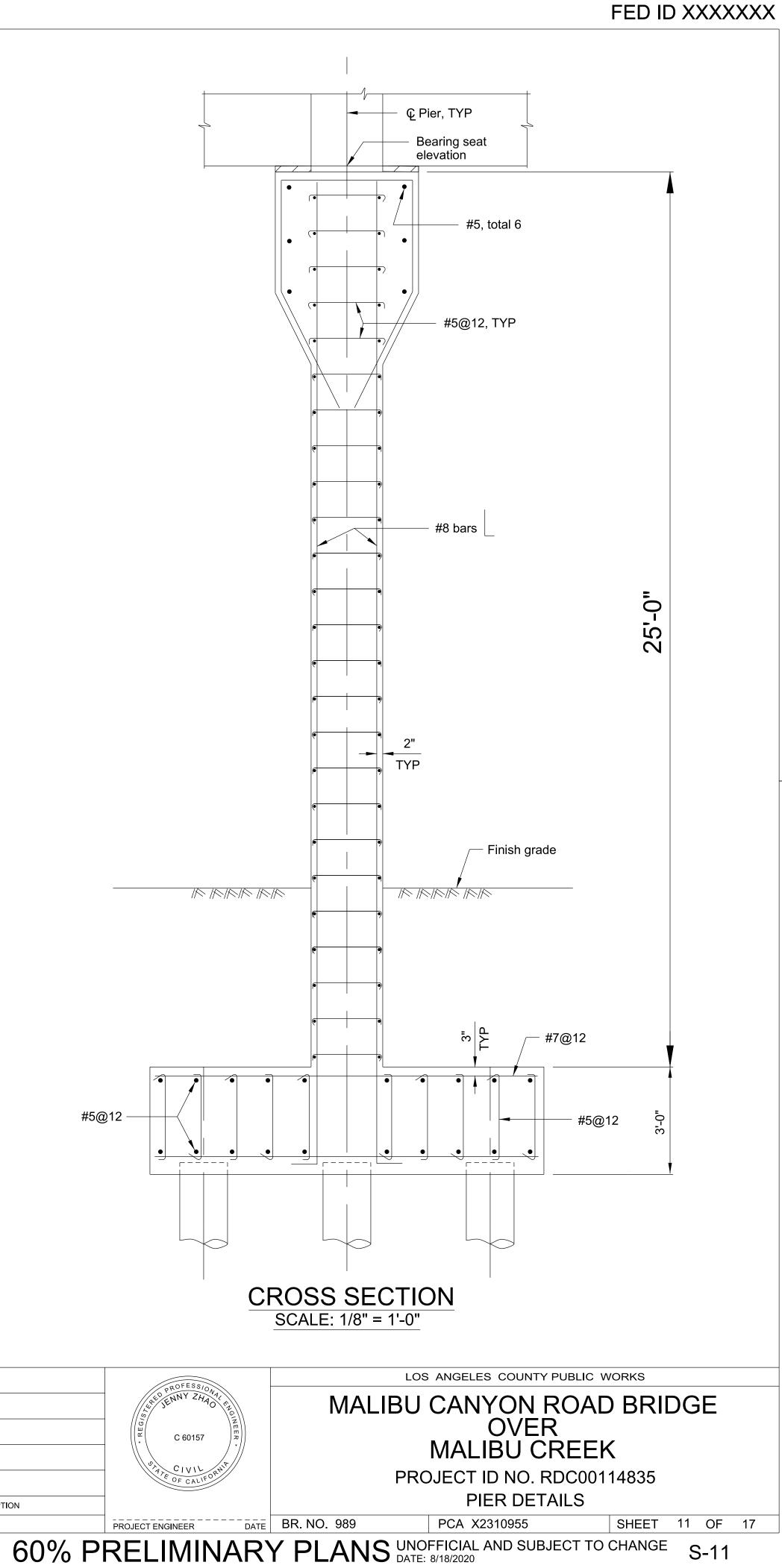

FILE: \$FILEL\$

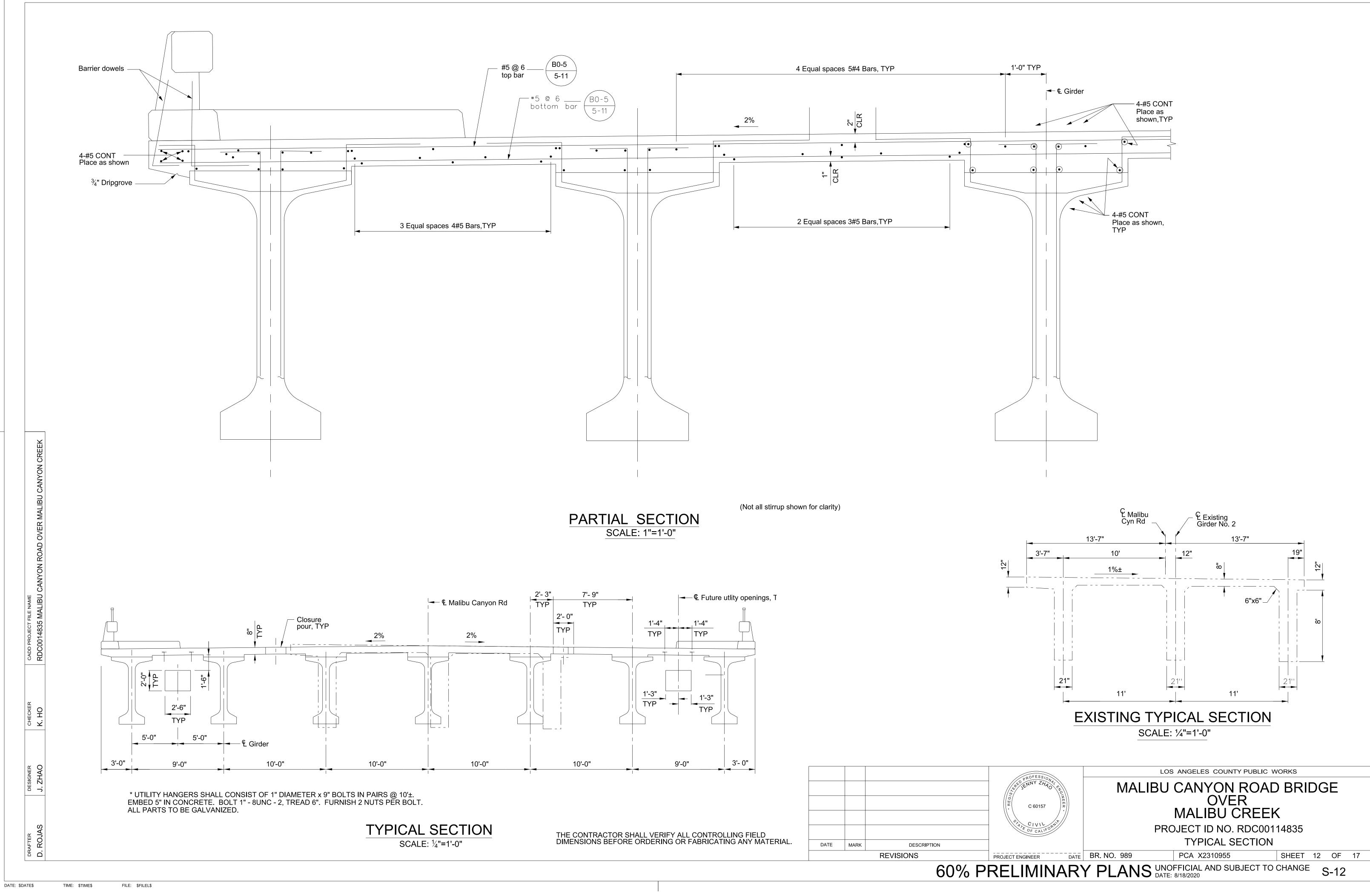
DATE	MARK	DESCRIPTION				
	REVISIONS					



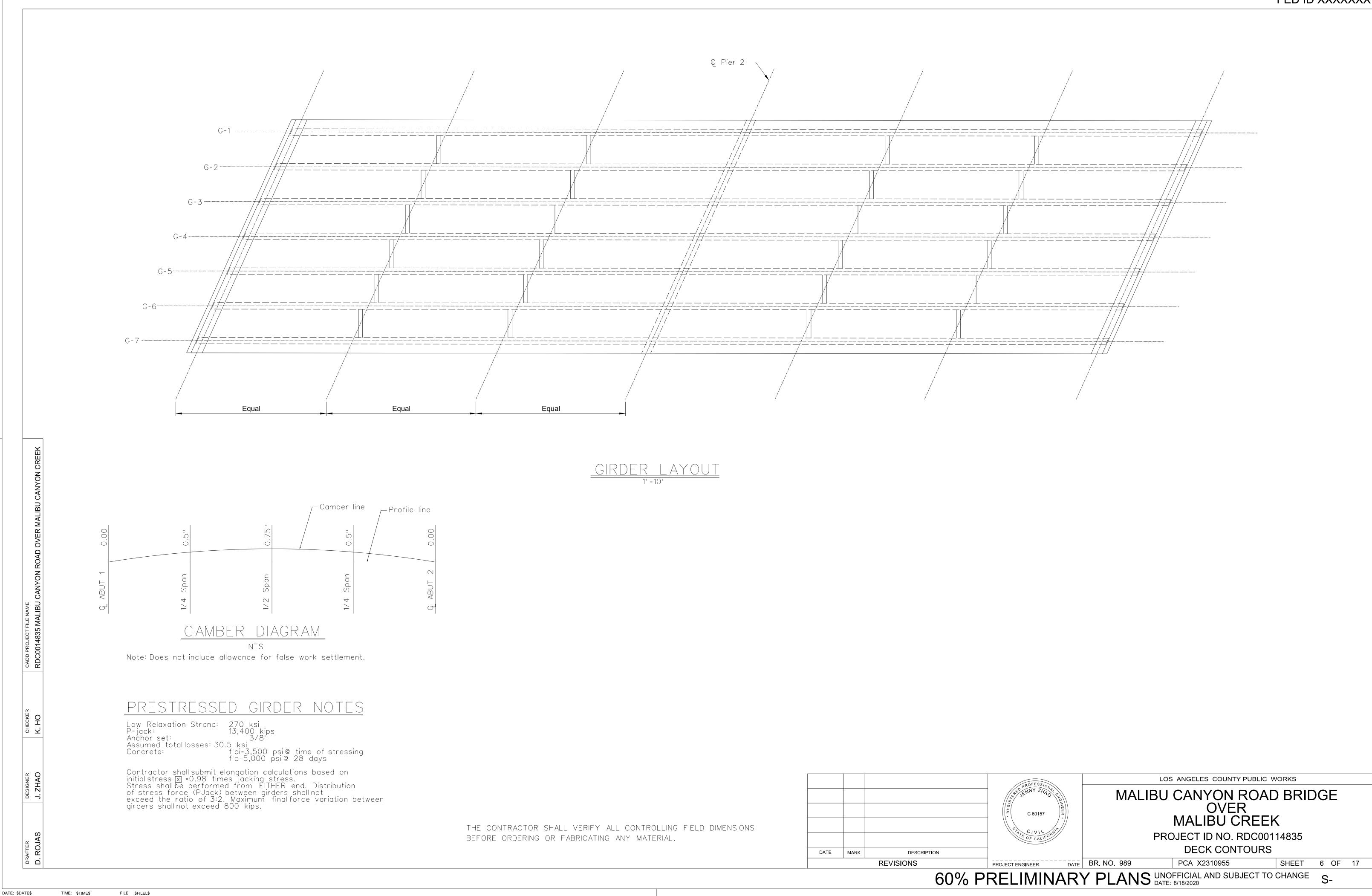

tom of footing elevations indicated thus:						
PILE DATA TABLE						
cation	Tip Elevation	Allowable Compression	Allowable Tension			
tment 1	XXX	416Kips	572Kips			
2	XXX	416Kips	289.5Kips			
tment 3	XXX	416Kips	289.5Kips			

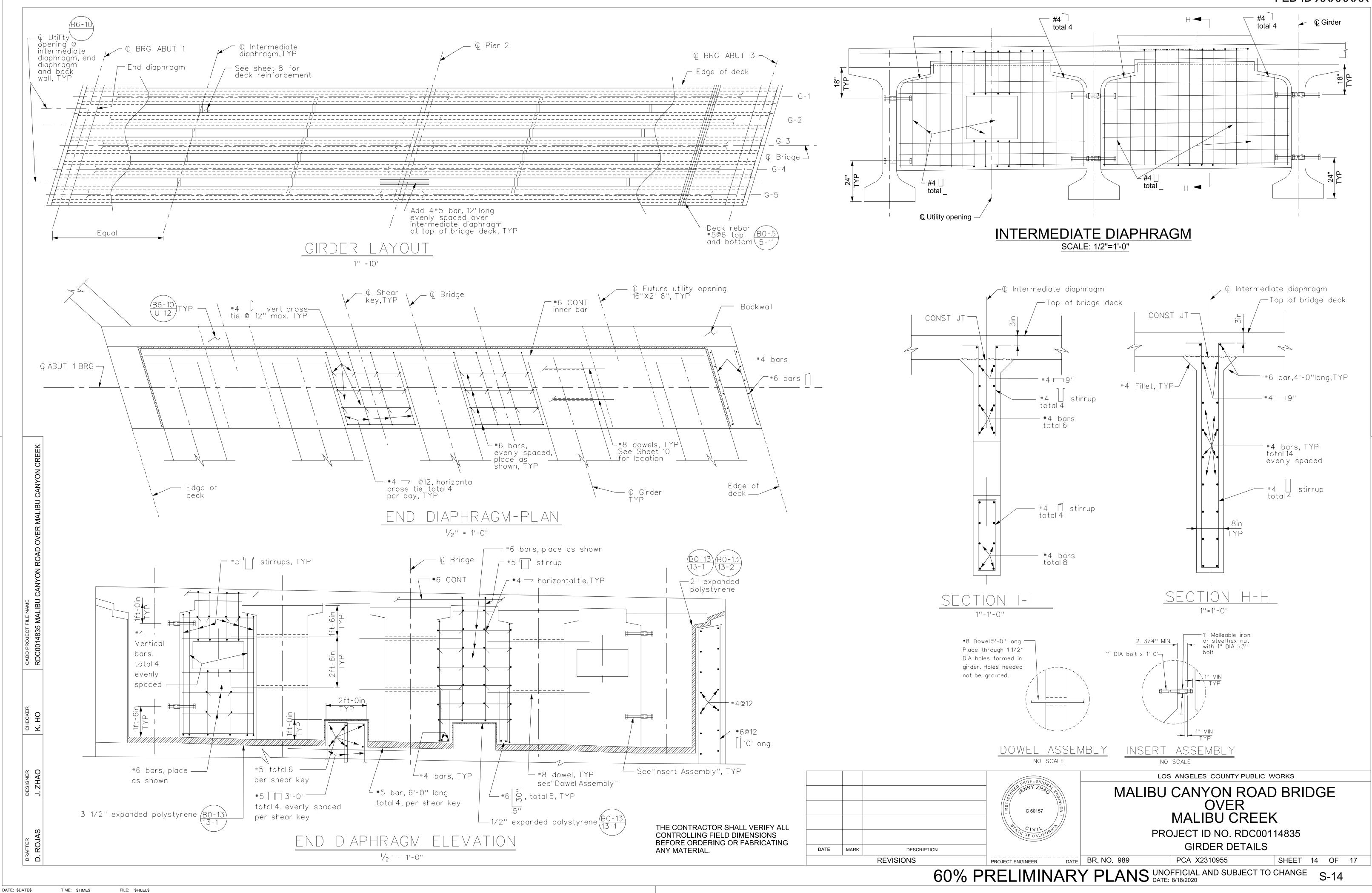


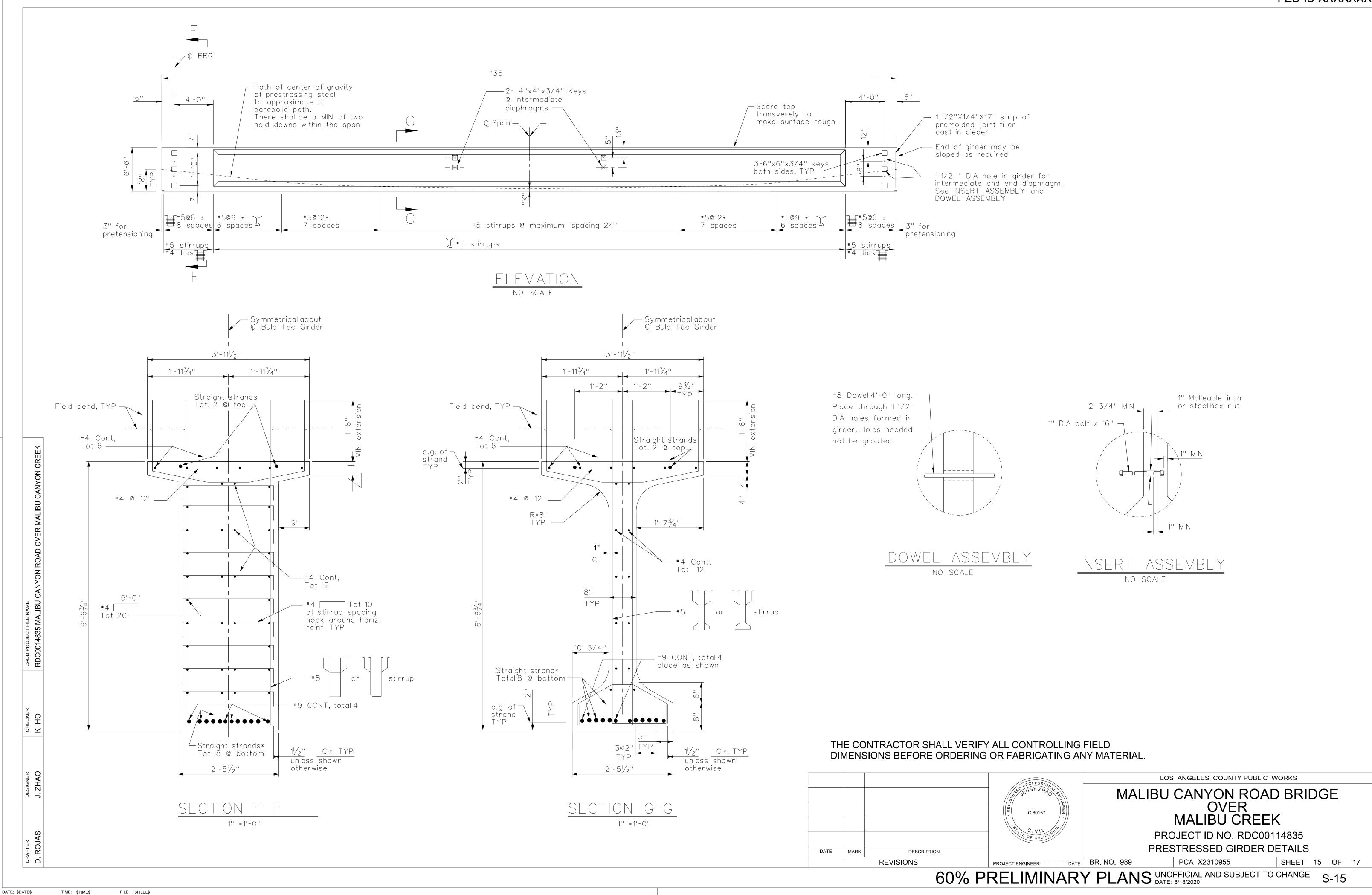

BEARING SEAT ELEVATION							
GIRDER	ABUTMENT 1	ABUTMENT 3					
G-1							
G-2							
G-3							
G-4							
G-5							
G-6							
G-7							

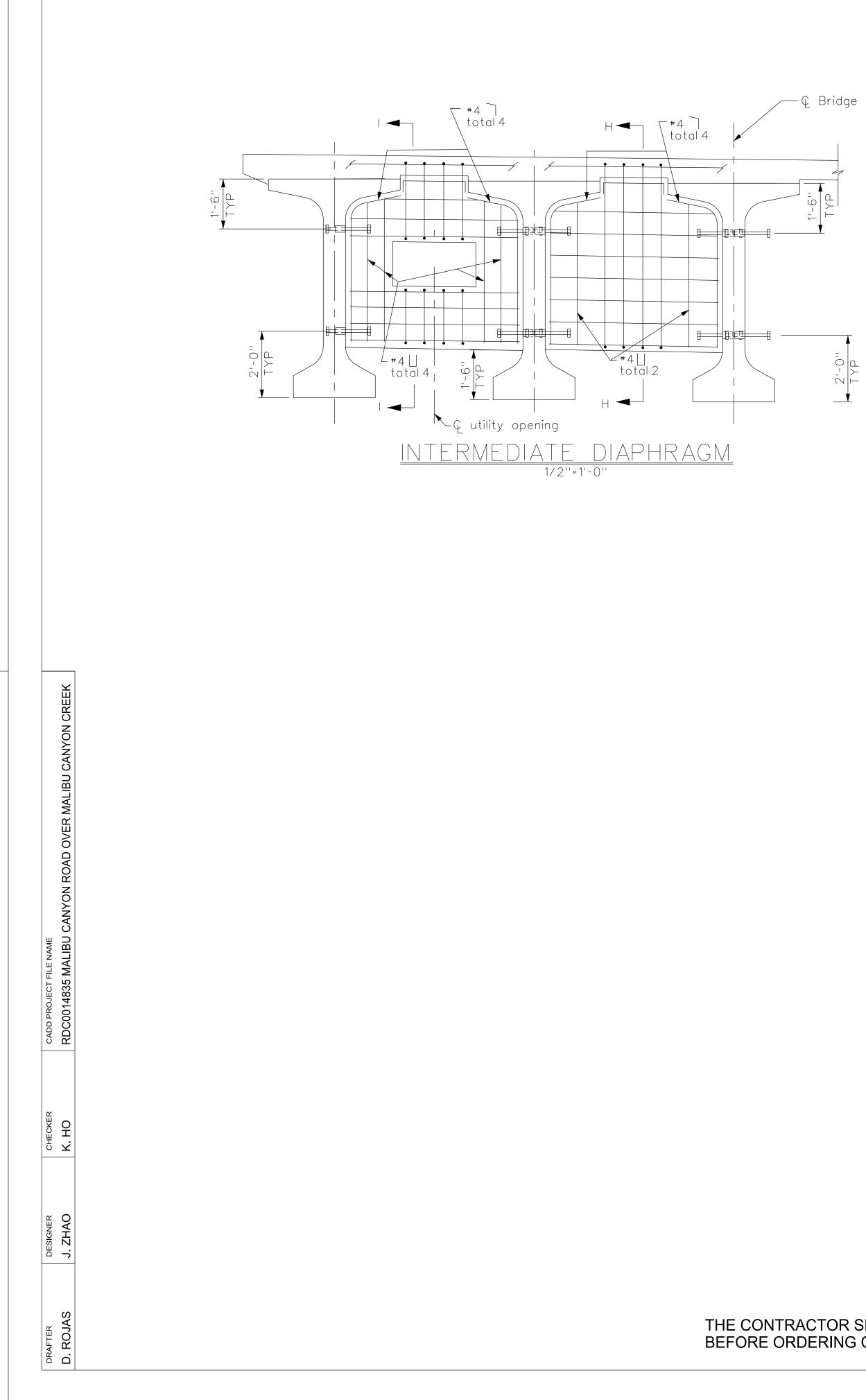


FOOTING PLAN
SCALE: 1⁄4" = 1'-0"

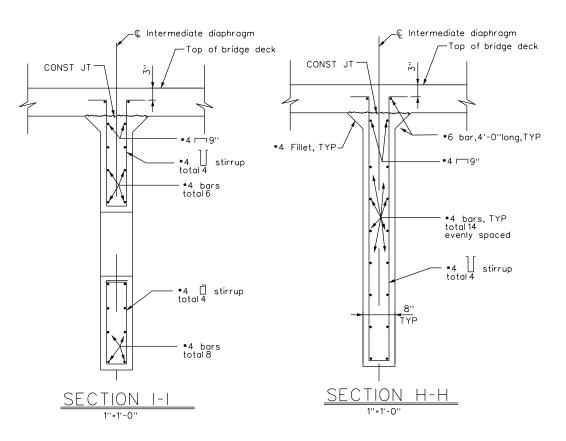


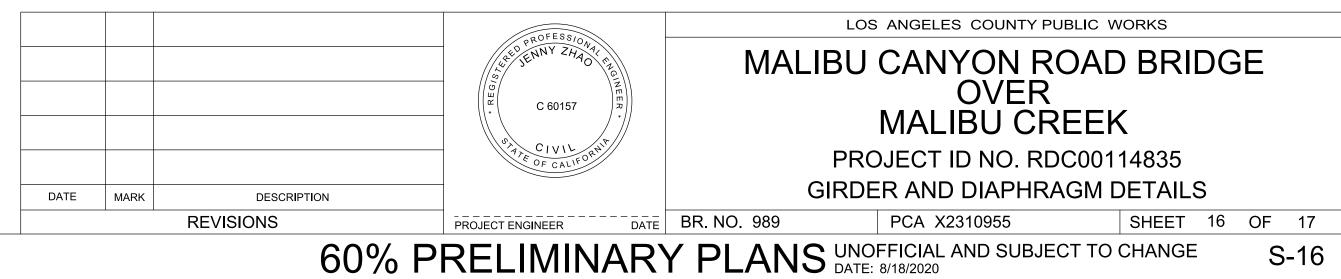






DATE	MARK	DESCRIPTION				
REVISIONS						

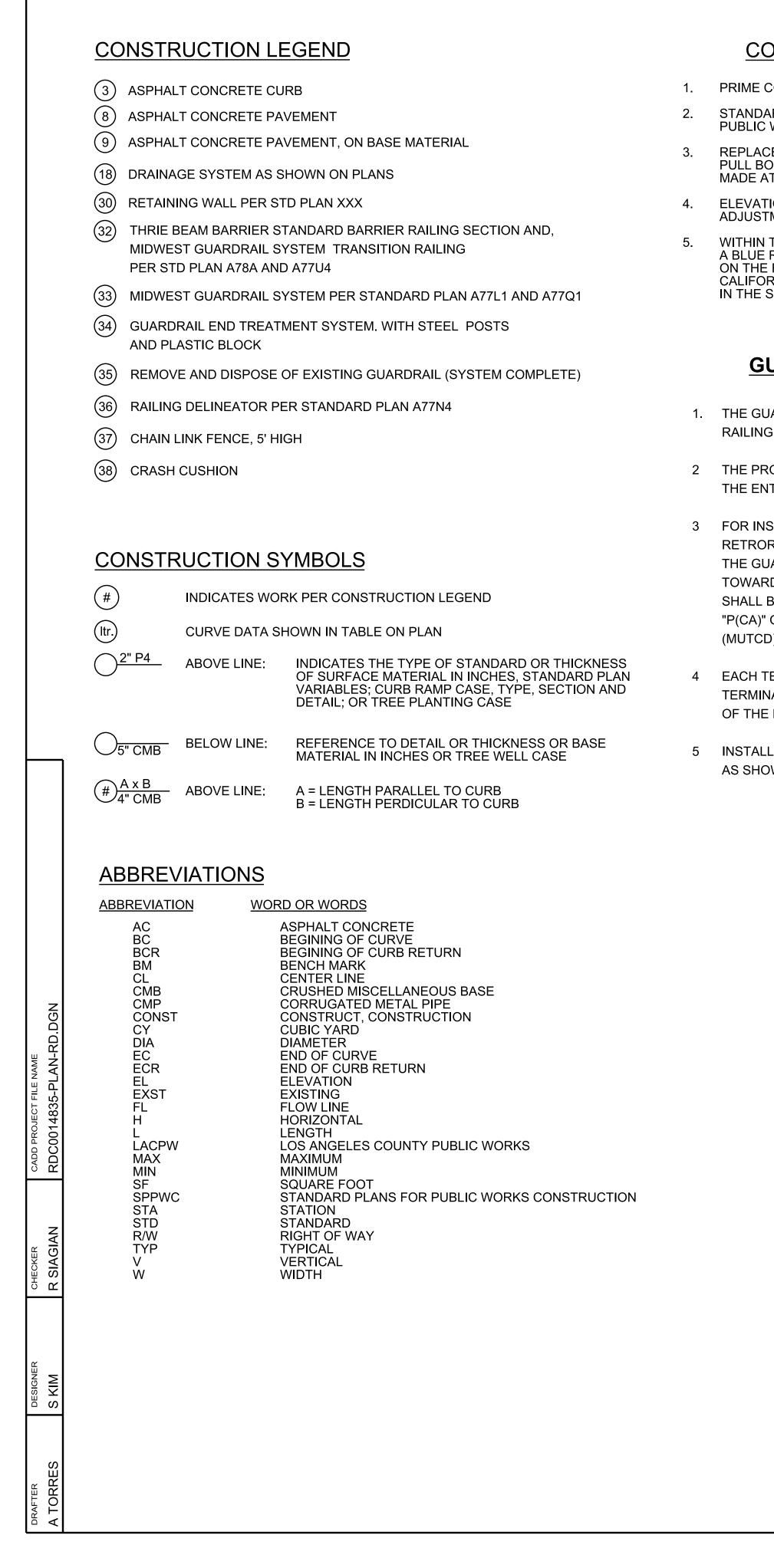




TIME: \$TIME\$

DATE: \$DATE\$

FILE: \$FILEL\$


THE CONTRACTOR SHALL VERIFY ALL CONTROLLING FIELD DIMENSIONS BEFORE ORDERING OR FABRICATING ANY MATERIAL.

					\bigcirc
CADD PROJECT FILE NAME RDC0014835 MALIBU CANYON ROAD OVER MALIBU CANYON CREEK					
ER MALIBU C					
YON ROAD OV					
FILE NAME 5 MALIBU CAN					
CADD PROJECT FILE NAME RDC0014835 MALIBU					
checker K. HO					
CHECKEI K. HO					
DESIGNER J. ZHAO					
DRAFTER D. ROJAS					
	E: \$TIME\$ F	-ile: \$filel\$			

LOS ANGELES COUNTY PUBLIC WORKS MALIBU CANYON ROAD BRIDGE OVER MALIBU CREEK NNY C 60157 PROJECT ID NO. RDC00114835 LOGS OF BORNINGS DESCRIPTION REVISIONS PCA X2310955 SHEET 17 OF 17 PROJECT ENGINEER DATE BR. NO. 989 60% PRELIMINARY PLANS UNOFFICIAL AND SUBJECT TO CHANGE S-17

THE CONTRACTOR SHALL VERIFY ALL CONTROLLING FIELD DIMENSIONS BEFORE ORDERING OR FABRICATING ANY MATERIAL. DATE MARK

)GS OF BORINGS

DATE: \$DATE\$

TIME: \$TIME\$

FILE: \$FILEL\$

CONSTRUCTION NOTES

PRIME CONTRACTOR LICENSE REQUIRED: CLASS A OR C12

STANDARD PLANS REFERENCED ARE PER THE STANDARD PLANS FOR PUBLIC WORKS CONSTRUCTION (SPPWC) UNLESS OTHERWISE NOTED.

REPLACE AND RELOCATE TRAFFIC SIGNAL AND STREET LIGHTING PULL BOXES AFFECTED AND CONSTRUCTION PAYMENT WILL BE MADE AT THE CONTRACT UNIT PRICE FOR NO. 6 PULL BOX.

ELEVATIONS SHOWN ARE IN FEET BASED ON MALIBU 2008 ADJUSTMENT NAVD 1988 DATUM.

WITHIN THE PROJECT LIMITS, THE CONTRACTOR SHALL INSTALL A BLUE RAISED RETROREFLECTIVE PAVEMENT MARKER (RPM) ON THE FINISHED SURFACE AT EACH FIRE HYDRANT LOCATION PER CALIFORNIA 2014 MUTCD PART 3 - FIGURE 3B-102 (CA), AS DESCRIBED IN THE SPECIAL PROVISIONS.

GUARDRAIL NOTES

THE GUARDRAIL LENGTH AND LOCATION ARE MEASURED ALONG THE FACE OF THE RAILING, UNLESS OTHERWISE SHOWN ON THE PLANS OR DIRECTED BY THE ENGINEER.

2 THE PROPOSED TERMINAL SYSTEM SHALL BE INSTALLED IN A STRAIGHT FLARE OVER THE ENTIRE LENGTH AND SHALL NOT BE INSTALLED ON A PARABOLIC CURVE.

FOR INSTALLATION OF TERMINAL SYSTEMS, BLACK AND YELLOW

RETROREFLECTIVE STRIPED SHEETING SHALL BE ADHERED TO THE APPROACH END OF THE GUARDRAIL. THE STRIPES SHALL BE SLOPED DOWN AT AN ANGLE OF 45 DEGREES TOWARDS THE SIDE OF THE ROADWAY ON WHICH TRAFFIC IS TO PASS. THE SHEETING SHALL BE CONSISTENT WITH THE DESIGN PATTERN, COLORS, AND DIRECTION OF A TYPE "P(CA)" OBJECT MARKER PER CALIFORNIA MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (MUTCD) 2014 EDITION, SECTION 2C.63 AND 2C.65.

EACH TERMINAL SYSTEM INSTALLED MUST BE IDENTIFIED BY PAINTING THE TYPE OF THE TERMINAL SYSTEM IN NEAT BLACK LETTERS AND FIGURES 2 INCHES HIGH ON THE BACKSIDE OF THE RAIL ELEMENT BETWEEN SYSTEM POST NUMBERS 4 AND 5.

5 INSTALL DELINEATORS PER CALTRANS STANDARD PLANS A77N4 & A73C, CLASS 1, TYPE F AS SHOWN ON PLAN.

 — w ———	WATER:
 — E ———	DOW/ER.
- G	
 — т ———	TELEPHONE:
 — s ———	SEWER:

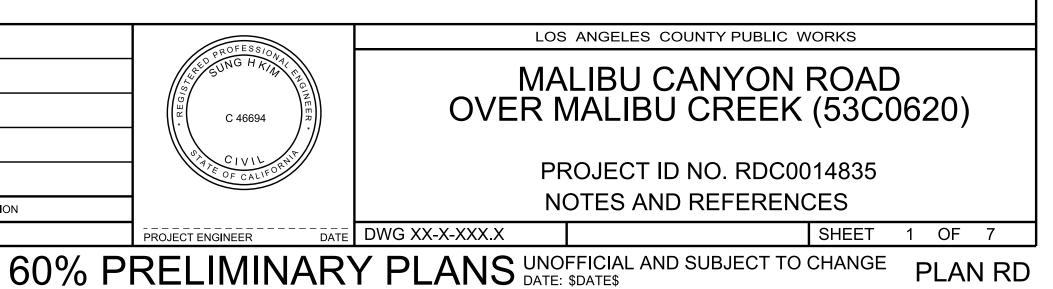
STANDARD PLANS

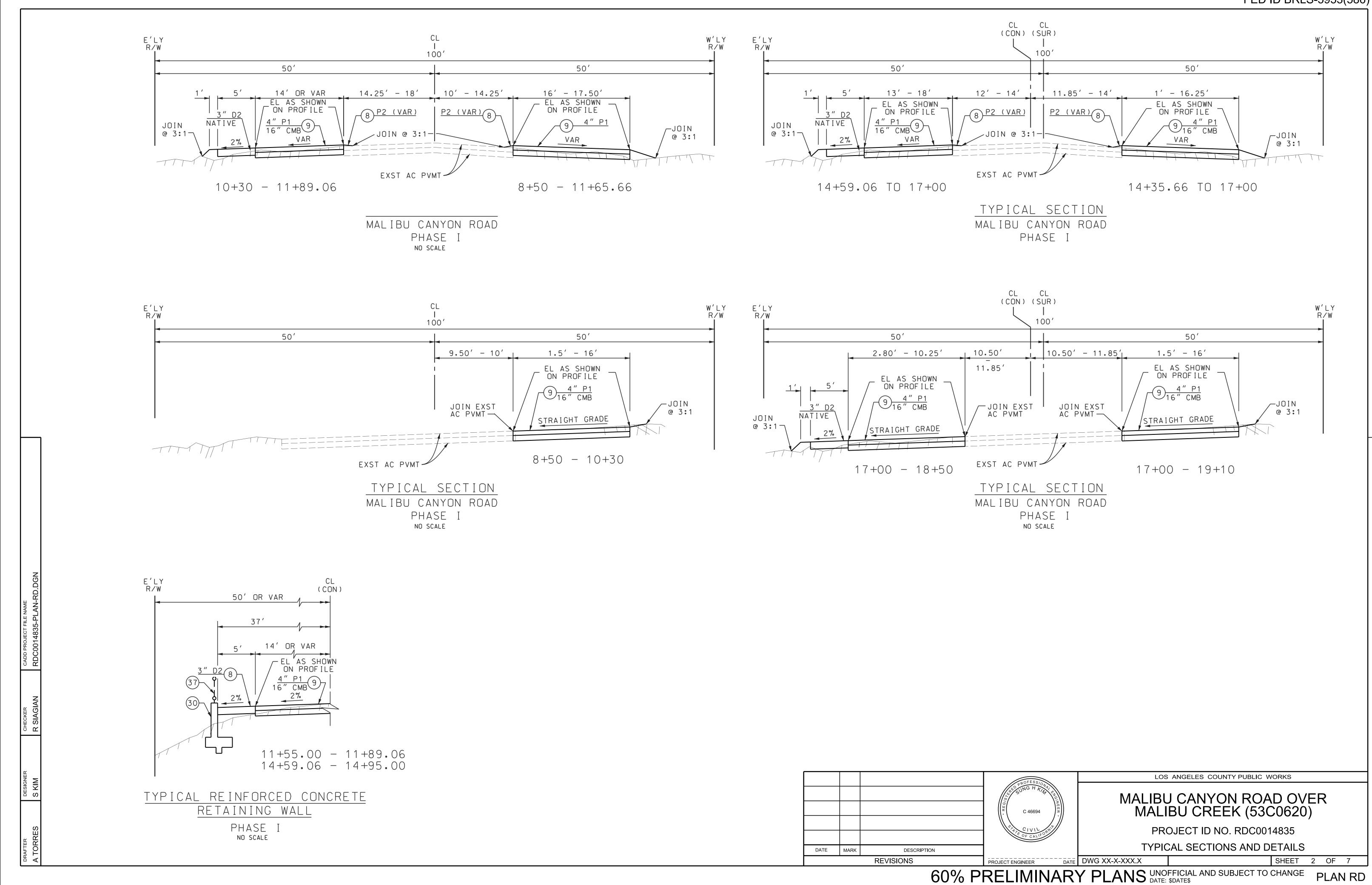
		101 001			
STANDARD 120-2	PLAN FOR PUBLIC WORKS CONSTRUCTION, 2012 EDITION CURB AND GUTTER - BASIN			EXISTING TOPOGRAPHY	PROPOSED IMPROVEMENTS
LA COUNT 3015	Y DPW STANDARD PLANS, 2000 EDITION RURAL CATCH BASIN	CURB CURB AND GU GUTTER PAVEMENT	TTER		
	CALIFORNIA DEPARTMENT OF TRANSPORTATION DPLANS (2018 EDITION)		AC		
A77L1	MIDWEST GUARDRAIL SYSTEM STANDARD RAILING SECTION (WOOD POST WITH WOOD BLOCK)	CURB RAMP			
A77N4	MIDWEST GUARDRAIL SYSTEM - TYPICAL RAILING DELINEATION	BUILDING			
A77Q1	MIDWEST GUARDRAIL SYSTEM - TYPICAL LAYOUTS FOR STRUCTURE APPROACH - (TYPE 12B LAYOUT)	FENCE GUY POLE			- * * * *
A77U4	MIDWEST GUARDRAIL SYSTEM - TRANSITION RAILING (TYPE WB-31) - (BLOCKOUT ATTACHMENT)		_	<u>_ M _ M</u>	
A78A	THRIE BEAM BARRIER - STANDARD BARRIER RAILING SECTION	FIRE HYDRAN	I	6-1	
	(WOOD POST WITH WOOD BLOCK) - (SINGLE THRIE BEAM BARRIER)	GOY WIRE		e ©	
		POLE		0	
		R/W LINE			
<u>REFE</u>	RENCES	PULL BOX		PB	
	FIELD NOTES: PWFB 1407, PG 560	SIDEWALK			
FINAL MA	TERIALS TEST REPORT: LAB NO XXXXX	SIGNAL CONT	ROL BOX		SHADED IF NOT CONTINUOUS
		SIGNAL	FLASHING	\bigcirc	
			TRAFFIC	Q	
		STREET LIGHT	Г	-\$-	
		PALM TREE		×	
		OAK TREE		$\sum o >$	
		OTHER TREE		\bigcirc	
		VALVE		6	
UTILII	TIES	VAULT		\bigtriangledown	
WATER:	LAS VIRGENES MUNICIPAL WATER DISTRICT (LVMWD) PEPPERDINE - TAPIA FORCE MAIN (P-TFM)				
POWER:	SOUTHERN CALIFORNIA EDISON - TRANSMISSION/DISTRIBUTION	(SCE-T/D)			
GAS:	SOUTHERN CALIFORNIA GAS - DISTRIBUTION (SCG-D)				
TELEPHONE	: CROWN CASTLE (CC)				
SEWER:	PEPPERDINE - TAPIA FORCE MAIN (P-TFM)				

		101 001			
	PLAN FOR PUBLIC WORKS CONSTRUCTION, 2012 EDITION CURB AND GUTTER - BASIN			EXISTING TOPOGRAPHY	PROPOSED IMPROVEMENTS
	Ó DPW STANDARD PLANS, 2000 EDITION RURAL CATCH BASIN	CURB CURB AND GU GUTTER PAVEMENT	TTER CONCRETE		
	CALIFORNIA DEPARTMENT OF TRANSPORTATION PLANS (2018 EDITION)		AC		
	MIDWEST GUARDRAIL SYSTEM STANDARD RAILING SECTION (WOOD POST WITH WOOD BLOCK)	CURB RAMP			
A77N4	MIDWEST GUARDRAIL SYSTEM - TYPICAL RAILING DELINEATION	BUILDING			
	MIDWEST GUARDRAIL SYSTEM - TYPICAL LAYOUTS FOR STRUCTURE APPROACH - (TYPE 12B LAYOUT)	FENCE GUY POLE			- ** *
A77U4	MIDWEST GUARDRAIL SYSTEM - TRANSITION RAILING (TYPE WB-31) - (BLOCKOUT ATTACHMENT)			<u> M M </u>	
A78A	THRIE BEAM BARRIER - STANDARD BARRIER RAILING SECTION			<u>6</u> -	
	(WOOD POST WITH WOOD BLOCK) - (SINGLE THRIE BEAM BARRIER)	GUY WIRE MANHOLE		e ©	
		POLE		0	
DEEE		R/W LINE			
REFER	RENCES	PULL BOX		PB	
	FIELD NOTES: PWFB 1407, PG 560	SIDEWALK			SHADED IF NOT
FINAL MA	TERIALS TEST REPORT: LAB NO XXXXX	SIGNAL CONT	ROL BOX		SHADED IF NOT CONTINUOUS
		SIGNAL	FLASHING	\bigcirc	
			TRAFFIC	Q	
		STREET LIGHT	Г	-\$-	
		PALM TREE		×	
		OAK TREE		$\sum_{i=1}^{i}$	
		OTHER TREE		\bigcirc	
		VALVE		6	
<u>UTILIT</u>	<u>IES</u>	VAULT			
WATER:	LAS VIRGENES MUNICIPAL WATER DISTRICT (LVMWD) PEPPERDINE - TAPIA FORCE MAIN (P-TFM)				
POWER:	SOUTHERN CALIFORNIA EDISON - TRANSMISSION/DISTRIBUTION	(SCE-T/D)			
GAS:	SOUTHERN CALIFORNIA GAS - DISTRIBUTION (SCG-D)				
TELEPHONE:	CROWN CASTLE (CC)				
SEWER:	PEPPERDINE - TAPIA FORCE MAIN (P-TFM)				

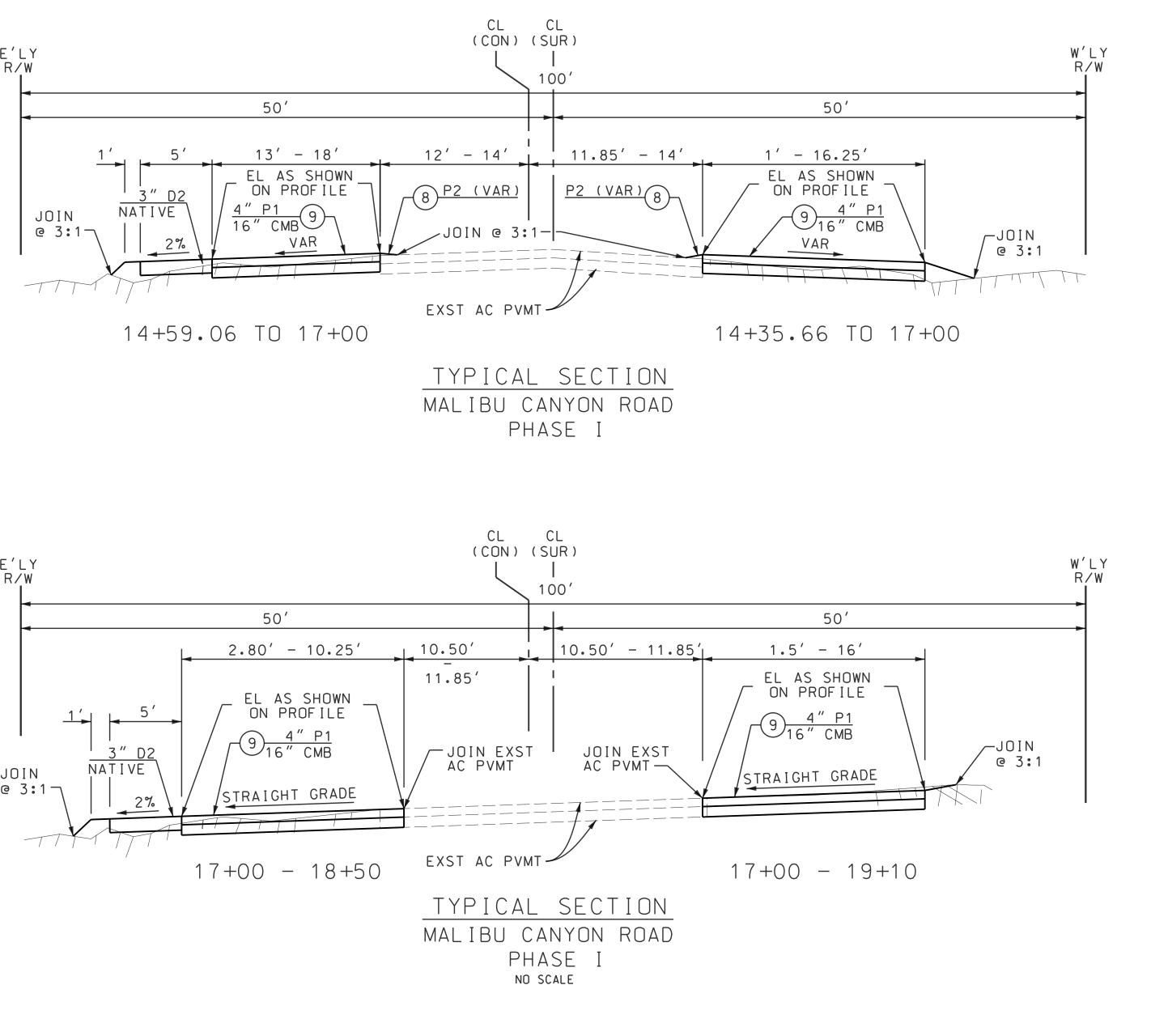
STANDARD 120-2	PLAN FOR PUBLIC WORKS CONSTRUCTION, 2012 EDITION CURB AND GUTTER - BASIN			EXISTING TOPOGRAPHY	PROPOSED IMPROVEMENTS
		CURB			
	Y DPW STANDARD PLANS, 2000 EDITION	CURB AND GL	JTTER		
3015	RURAL CATCH BASIN	GUTTER			
		PAVEMENT	CONCRETE		
	CALIFORNIA DEPARTMENT OF TRANSPORTATION D PLANS (2018 EDITION)		AC		
A77L1	MIDWEST GUARDRAIL SYSTEM STANDARD RAILING SECTION (WOOD POST WITH WOOD BLOCK)	CURB RAMP			
A77N4	MIDWEST GUARDRAIL SYSTEM - TYPICAL RAILING DELINEATION	BUILDING			
A77Q1	MIDWEST GUARDRAIL SYSTEM - TYPICAL LAYOUTS FOR STRUCTURE APPROACH - (TYPE 12B LAYOUT)	FENCE GUY POLE			
A77U4	MIDWEST GUARDRAIL SYSTEM - TRANSITION RAILING (TYPE WB-31) -	DRIVEWAY		<u> </u>	
	(BLOCKOUT ATTACHMENT)	FIRE HYDRAN	т	Q-	
A78A	THRIE BEAM BARRIER - STANDARD BARRIER RAILING SECTION	GUY WIRE		E	
	(WOOD POST WITH WOOD BLOCK) - (SINGLE THRIE BEAM BARRIER)	MANHOLE		\odot	
		POLE		\bigcirc	
		R/W LINE		<u> </u>	
<u>REFE</u>	<u>RENCES</u>	PULL BOX		PB	
SURVEY I	FIELD NOTES: PWFB 1407, PG 560	SIDEWALK			Ŋ
FINAL MA	TERIALS TEST REPORT: LAB NO XXXXX	SIDEWALK			SHADED IF NOT CONTINUOUS
		SIGNAL CONT	ROL BOX		CONTINUOUS
		SIGNAL	FLASHING	\bigcirc	
			TRAFFIC	Ś	
		STREET LIGH		-\$-	
		PALM TREE		×	
		OAK TREE		<u>Lo</u> >	
		OTHER TREE		È	
		VALVE		\bigcirc	
		VAULT		\square	
UTILIT	TES				
WATER:	LAS VIRGENES MUNICIPAL WATER DISTRICT (LVMWD) PEPPERDINE - TAPIA FORCE MAIN (P-TFM)				
POWER:	SOUTHERN CALIFORNIA EDISON - TRANSMISSION/DISTRIBUTION	(SCE-T/D)			
GAS:	SOUTHERN CALIFORNIA GAS - DISTRIBUTION (SCG-D)				
FELEPHONE					
SEWER:	PEPPERDINE - TAPIA FORCE MAIN (P-TFM)				

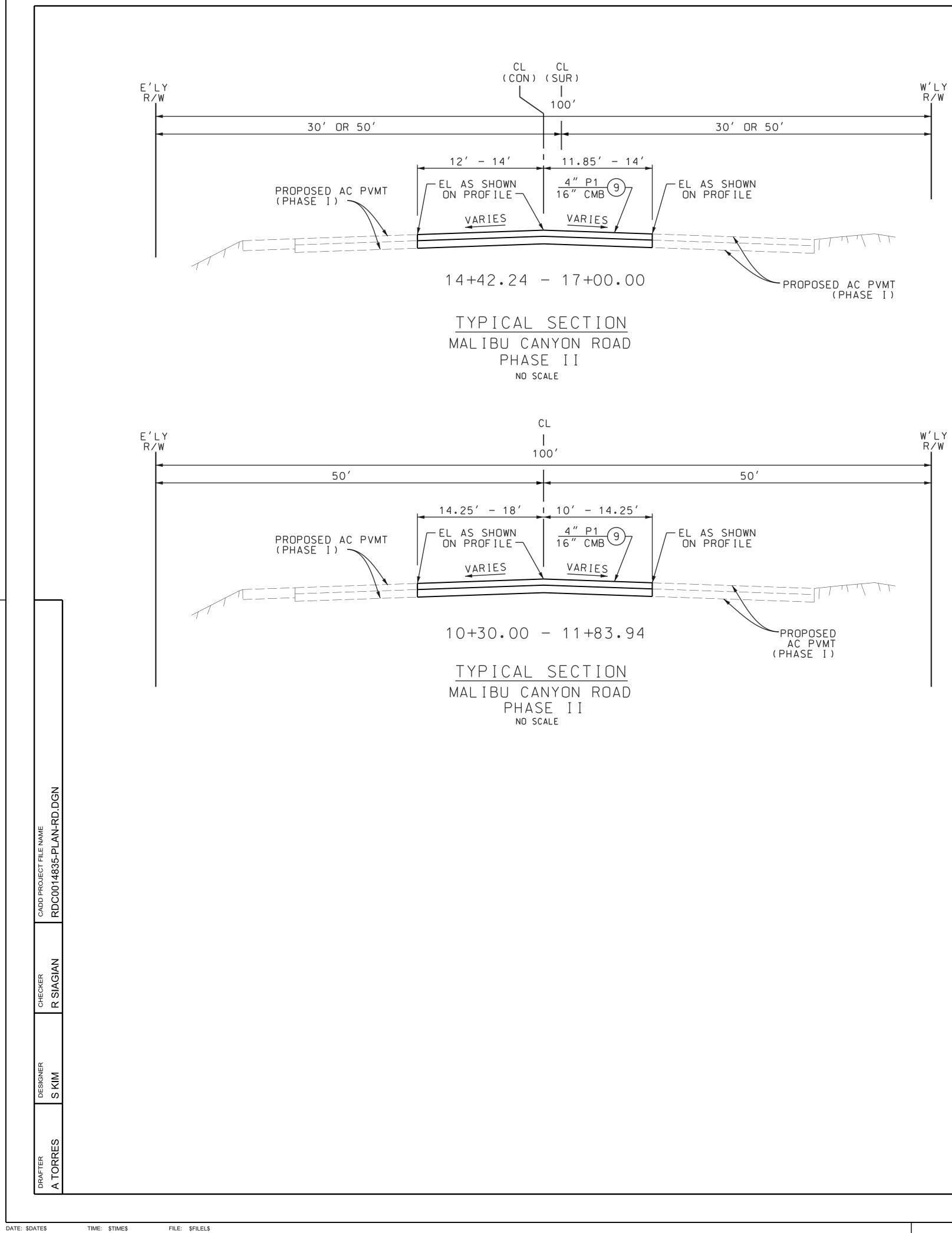
SUBMITTED BY:				
		DATE	MARK	DESCRIPTION
DESIGN TEAM III	DATE			REVISIONS

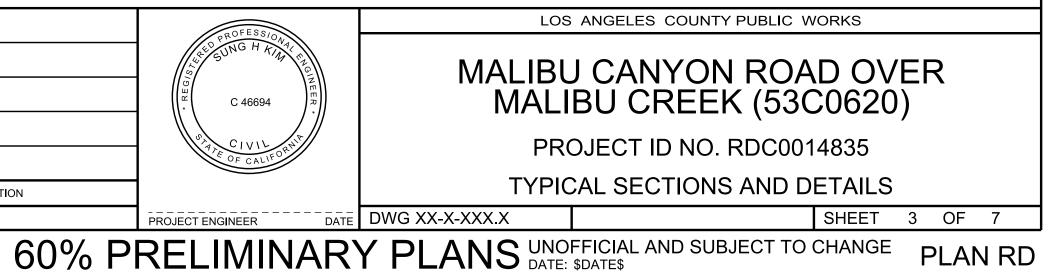

TOPOGRAPHY LEGEND

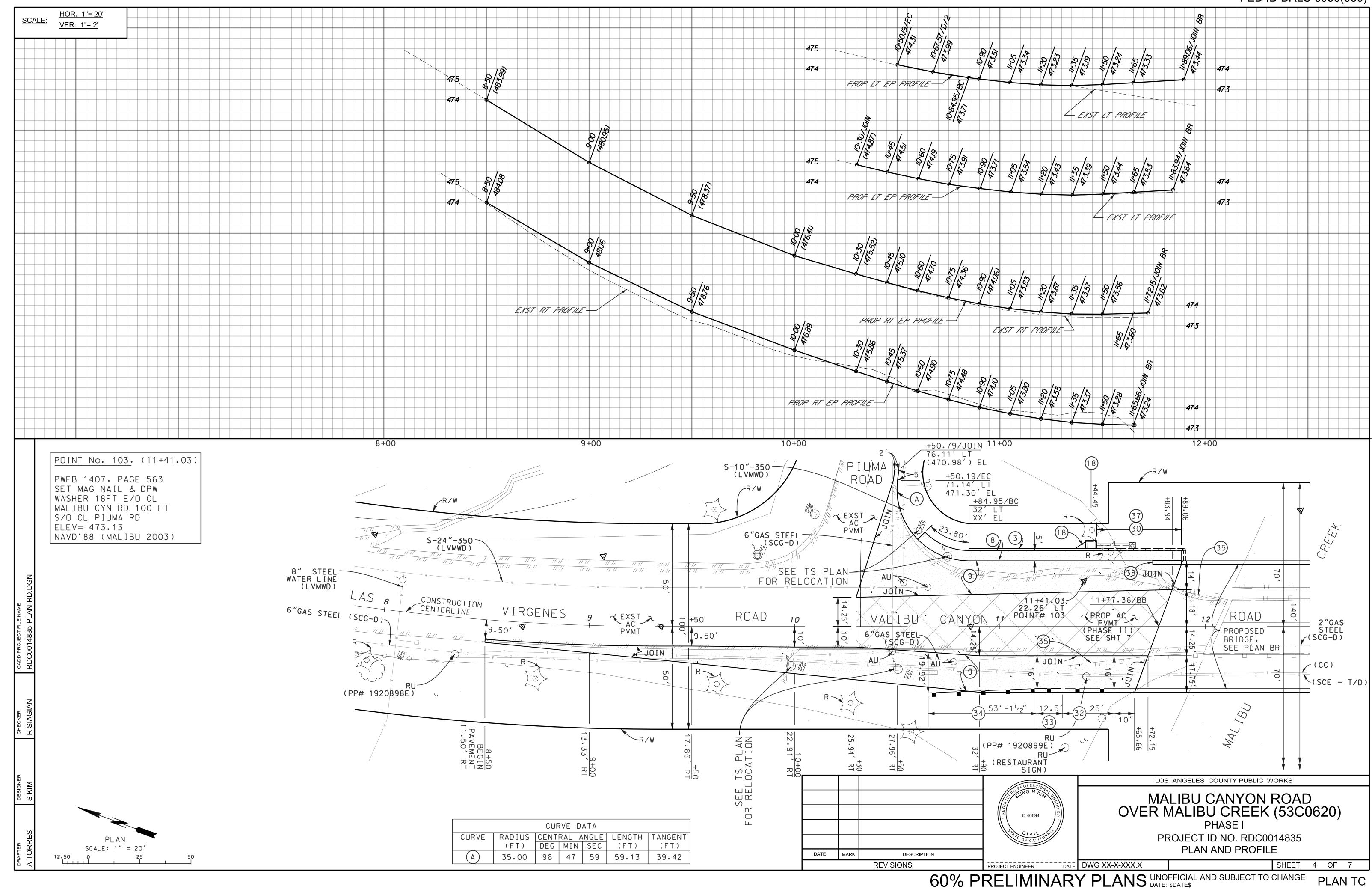

AC PAVEMENT CLASS AND GRADE LEGEND

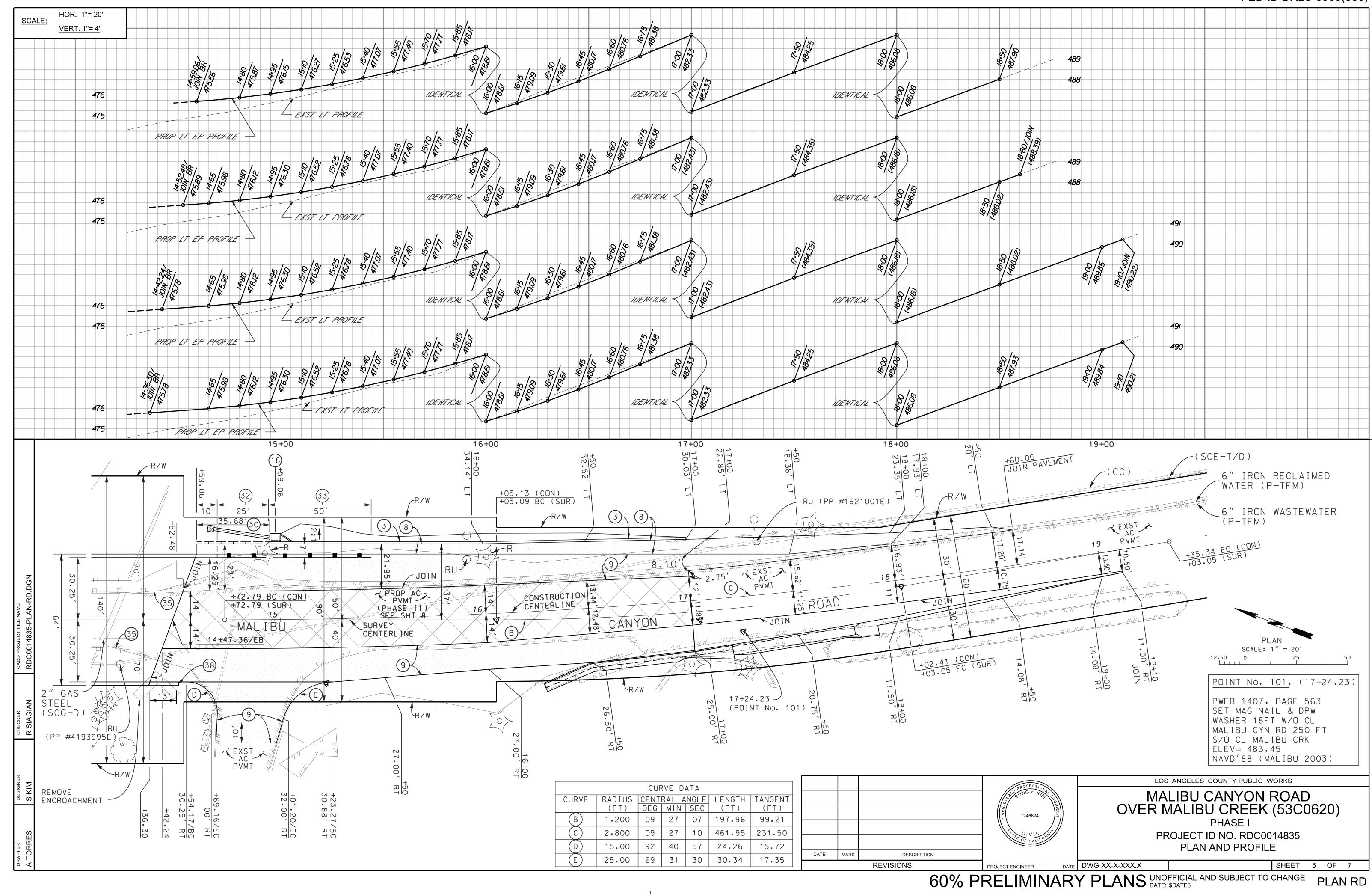
P1 C2-PG 64-10 B-PG 64-10 P2 C2-PG 64-10


P3 B-PG 64-10

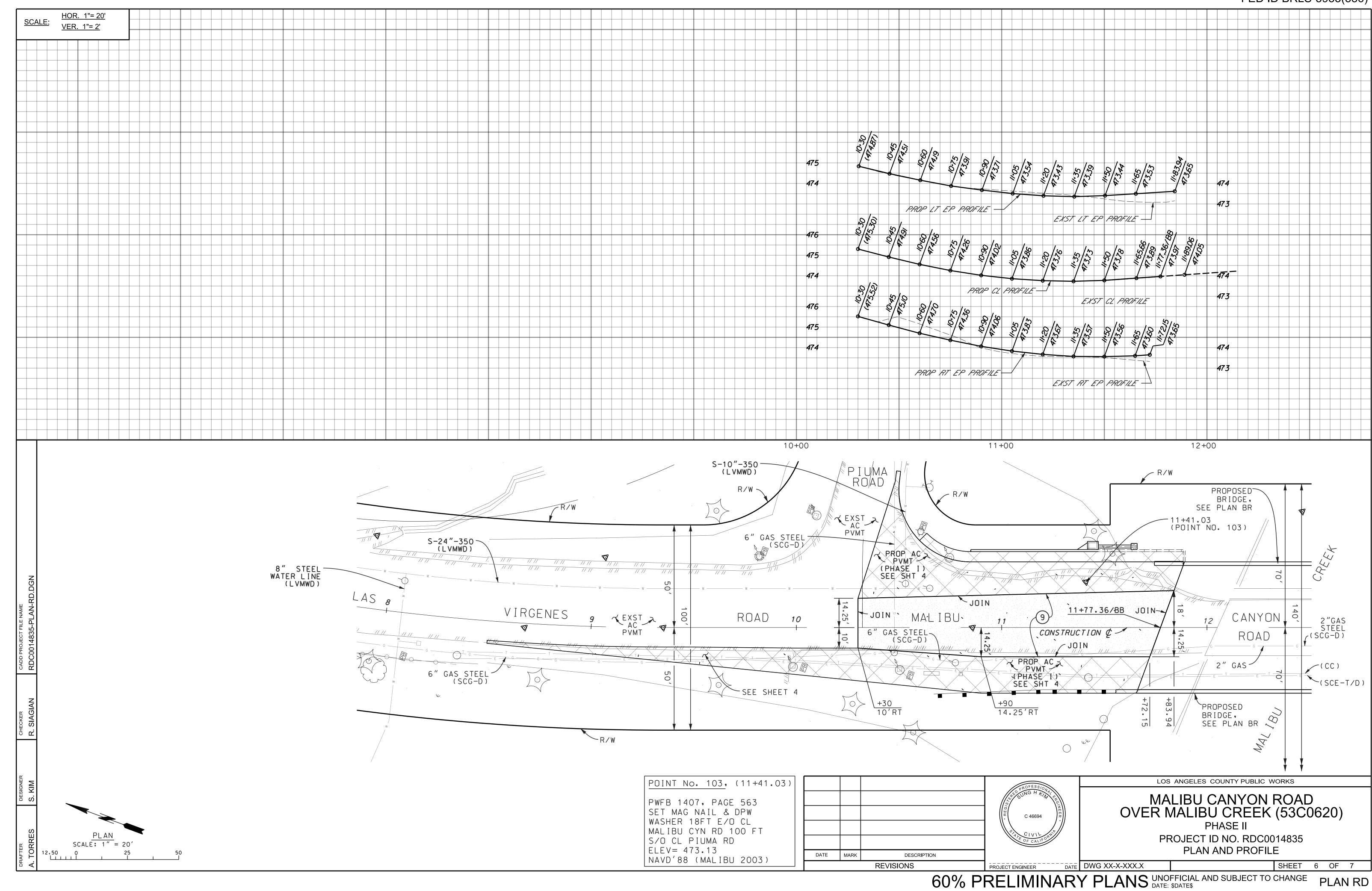

P4 D2-PG 64-10

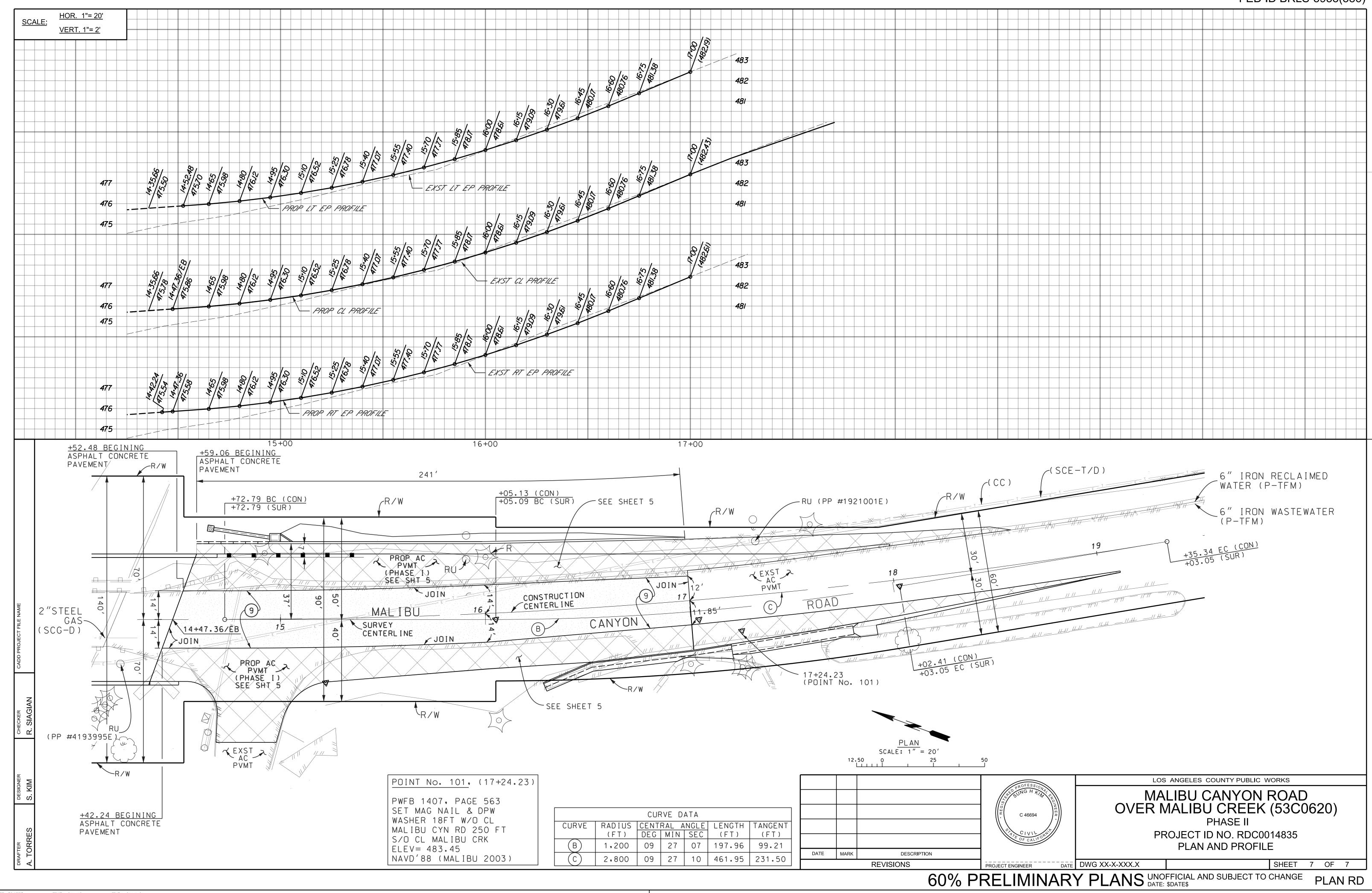



FILE: \$FILEL\$ DATE: \$DATE\$ TIME: \$TIME\$



DATE	MARK	DESCRIPTION
		REVISIONS


FED ID BRLS-5953(586)


FILE: \$FILEL\$ DATE: \$DATE\$ TIME: \$TIME\$

		CUE	RVE D	ΛΤΛ						
CURVE	RADIUS	CENT		NGLE	LENGTH	TANGENT				
	(FT)	DEG	MIN	SEC	(FT)	(FT)				
(B)	1,200	09	27	07	197.96	99.21				
(C)	2,800	09	27	10	461.95	231.50				
	15.00	92	40	57	24.26	15.72				
(E)	25.00	69	31	30	30.34	17.35	1	DATE	MARK	DESCRIPTIO
	23.00	09	JI	50	50.54	11.00	J			REVISIONS

FED ID BRLS-5953(586)

FED ID BRLS-5953(586)

DATE: \$DATE\$ TIME: \$TIME\$ FILE: \$FILEL\$

FED ID BRLS-5953(586)

Appendix E

Historical Annual Peak Flows at F130-R Gage

RUNOFF – STREAM GAGING STATION PEAK FLOW

MALIBU CREEK below Cold Creek. STATION NO. F130-R

Season		Daily CFS		Total Runoff	Peak	Flow
	Maximum	Minimum	Mean	(Acre-feet)	Date	CFS
1930-31	*	*	*	1,920*	Feb 04	723
1931-32	1,770	+	20.2	14,670	Feb 09	3,100
1932-33	1,100	0.1	12.7	9,190	Jan 19	4,460
1933-34	3,160	0.1	17.1	12,370	Jan 01	9,650
1934-35	511	+	8.6	6,220		N.D.
1935-36	92	0	3.2	2,310	Feb 23	147
1936-37	1,680	0	33.1	23,940	Feb 14	2,760
1937-38	5,090E	0.2	47.1	34,100	Mar 02	10,000E
1938-39	139	0	6.4	4,630	Dec 20	331
1939-40	335	+	8.4	6,100	Feb 02	690
1940-41	2,200	0.1	101	73,220	Feb 20	3,620
1941-42	32	0.1	2.5	1,820	Dec 28	140
1942-43	5,370	0.1	65.8	47,600	Jan 22	12,200
1943-44	3,400	0.7	41.6	30,170	Feb 22	7,700
1944-45	210	0.2	5.8	4,240	Feb 02	516
1945-46	267	0.1	5.2	3,800	Mar 30	506
1946-47	142	0.1	5.3	3,820	Nov 13	980
1947-48	15	+	0.2	177	Mar 24	113
1948-49	1	+	0.1	90	May 18	1
1949-50	64	0	0.7	477	Feb 06	674
1950-51	0	0	0.1	56	Jan 11	3
1951-52	6,720	0	80.2	58,200	Mar 15	13,600
1952-53	81	+	4	2,940	Nov 15	322
1953-54	655	0.1	6.9	4,990	Feb 13	2,250
1954-55	16	0.1	1	758	Jan 18	45
1955-56	1,260	0.1	6.5	4,680	Jan 26	3,600
1956-57	12	+	0.6	444	Feb 23	46
1957-58	1,630	+	43.7	31,660	Apr 03	4,260
1958-59	114	0.1	2.1	1,510	Jan 06	3,180
1959-60	17	+	0.7	504	Apr 27	84
1960-61	2	+	0.1	99	Jan 26	8
1961-62	3,920	+	36.3	26,150	Feb 10	7,060
1962-63	24	+	1	701	Mar 16	104

- M Data missing
- * Record incomplete
- E Estimate
- N.D. Not determined
- ** Record not computed
- + Less than 0.05 acre feet or less than 0.05 cfs, but greater than 0

RUNOFF – STREAM GAGING STATION PEAK FLOW

MALIBU CREEK below Cold Creek. STATION NO. F130-R

Season		Daily CFS		Total Runoff	Peak	Flow
	Maximum	Minimum	Mean	(Acre-feet)	Date	CFS
1963-64	17	+	0.5	384	Jan 22	65
1964-65	148	+	2.2	1,560	Apr 09	521
1965-66	7,060	0.2	51.8	37,520	Dec 29	20,600
1966-67	2,710	0.9	35.5	25,700	Jan 24	10,200
1967-68	1,350	1	18.5	13,430	Mar 08	3,830
1968-69	24,200	1.4	166	119,900	Jan 25	33,800
1969-70	368	0.5	9.9	7,200	Mar 04	1,150
1970-71	1,480	1.2	23.7	17,300	Dec 19	7,390
1971-72	582	0.9	6	4,340	Dec 27	2,120
1972-73	3,340	0.8	35.1	25,400	Feb 11	7,480
1973-74	2,240	2.7	22	15,910	Jan 07	5,100
1974-75	519	2.3	15.2	11,020	Dec 04	2,670
1975-76	163	1.1	5.4	3,910	Feb 09	339
1976-77	315	1.1	6.9	4,980	Jan 07	597
1977-78	7,620	1.7	112.4	80,990	Mar 04	19,400
1978-79	1,220	2.3	46.4	33,408	Mar 27	4,420
1979-80	*	*	*	*	Feb 16	*
1980-81	357	1.7	13.5	9,832	Mar 05	910
1981-82	400	2.2	13.9	10,031	Mar 17	676
1982-83	7,720	2.7	121.8	88,148	Mar 01	24,200
1983-84	758	2.5	24.1	17,411	Dec 25	1,840
1984-85	588	0.9	16.6	12,002	Dec 19	880
1985-86	1,480	1.4	39.3	27,881	Feb 15	5,880
1986-87	216	0.5	8.6	6,236	Nov 18	653
1987-88	559	0.6	24	17,337	Feb 28	1,680
1988-89	257	1.6	12.3	8,876	Feb 09	441
1989-90	*	*	*	*		*
1990-91	982	0.8	20.5	14,872	Mar 19	3,150
1991-92	5,850	2	92.7	67,330	Feb 10	23,300
1992-93	*	*	*	*		*
1993-94	880	0.9	16.7	11,090	Feb 20	2,450
1994-95	4,530	3.1	97.8	68,700	Mar 11	15,700
1995-96	637	1.5	12.9	9,395	Feb 21	1,220

- M Data missing
- * Record incomplete
- E Estimate
- N.D. Not determined
- ** Record not computed
- + Less than 0.05 acre feet or less than 0.05 cfs, but greater than 0

RUNOFF – STREAM GAGING STATION PEAK FLOW

MALIBU CREEK below Cold Creek. STATION NO. F130-R

Season		Daily CFS		Total Runoff	Peak	Flow
	Maximum	Minimum	Mean	(Acre-feet)	Date	CFS
1996-97	807	3.2	43.1	31,180	Dec 09	1,800
1997-98	4,020	2.4	113	81,700	Feb 07	19,100
1998-99	134	2.8	10.3	7,430	Apr 11	761
1999-00	701	1.4	22.6	16,440	Feb 23	2,380
2000-01	3,950	0.6	53.8	38,920	Mar 06	10,900
2001-02	93	0.9	10.6	7,670	Nov 24	413
2002-03	1,979	1.9	25.9	18,761	Feb 12	5,410
2003-04	1,470	1.2	13	9,442	Feb 26	5,130
2004-05	7,330	1.3		103,000	Jan 09	12,700
2005-06	845	3.1	31.9	23,120	Jan 02	2,586
2006-07	80	0.7	10.1	7,309	Feb 22	189
2007-08	1,940	0.9	32.4	23,510	Jan 27	3,851
2008-09	521	0.8	13.4	9,710	Feb 16	1,350
2009-10	816	1.97	27	19,530	Jan 20	2,970
2010-11	2,010	1.94	40.8	29,530	Mar 20	6,490
2011-12	320	0.86	11.9	8,660	Apr 13	1,030
2012-13	148	0.95	8.14	5,890	Jan 24	296
2013-14	646	0.9	7.07	5,120	Feb 28	1,550
2014-15	554	1.26	9.36	6,780	Dec 12	2,130
2015-16	174	0.68	6.51	4,720	Jan 05	496
2016-17	3,180	1.41	45.7	33,090	Feb 17	16,900
2017-18	219	1.16	7.14	5,170	Mar 21	775
2018-19	1,590	1.75	53.1	38,420	Feb 02	7,940
2019-20	680	2.29	23.5	17,040	Dec 26	2,300
2020-21	186	2.6	9.29	6,730	Dec 28	526

- M Data missing
- * Record incomplete
- E Estimate
- N.D. Not determined
- ** Record not computed
- + Less than 0.05 acre feet or less than 0.05 cfs, but greater than 0

Appendix F

Rivertech 1990 Flood Study

FLOODPLAIN EVALUATION STUDY FOR MALIBU CREEK NEAR THE TAPIA WATER RECLAMATION FACILITY

OUPLICA

RIVERTECH

V INC

287

Prepared For:

5 .

Katsura Consulting Engineers 2284 S. Victoria Avenue, Suite 2A Ventura, CA 93003

Prepared By:

Rivertech Inc. 23332 Mill Creek Drive, Suite 100 Laguna Hills, CA 92653 (714) 586-6121

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	MALIBU CREEK BACKGROUND INFORMATION	4
3.0	HYDROLOGY	8
3.1	Existing Studies	8
3.2	Verification of Design Discharge	8
3.4	Conclusion	10
4.0	DETERMINATION OF CHANNEL ROUGHNESS	12
4.1	Description of Manning's n Value Determination	12
4.2	Description of Existing Channel Roughness Characteristics	12
4.3	Determination of Manning's n Values	13
4.4	Debris Effects at the Bridge	18
5.0	HYDRAULIC ANALYSIS	20
6.0	CONCLUSIONS	24

Î

288

LIST OF TABLES

Table 3.1	Peak Flow Results	10
Table 5.1	Results of Existing Conditions Hydraulic Analysis.	22
Table 5.2	Results of Ultimate Condition Hydraulic Analysis.	23

LIST OF FIGURES

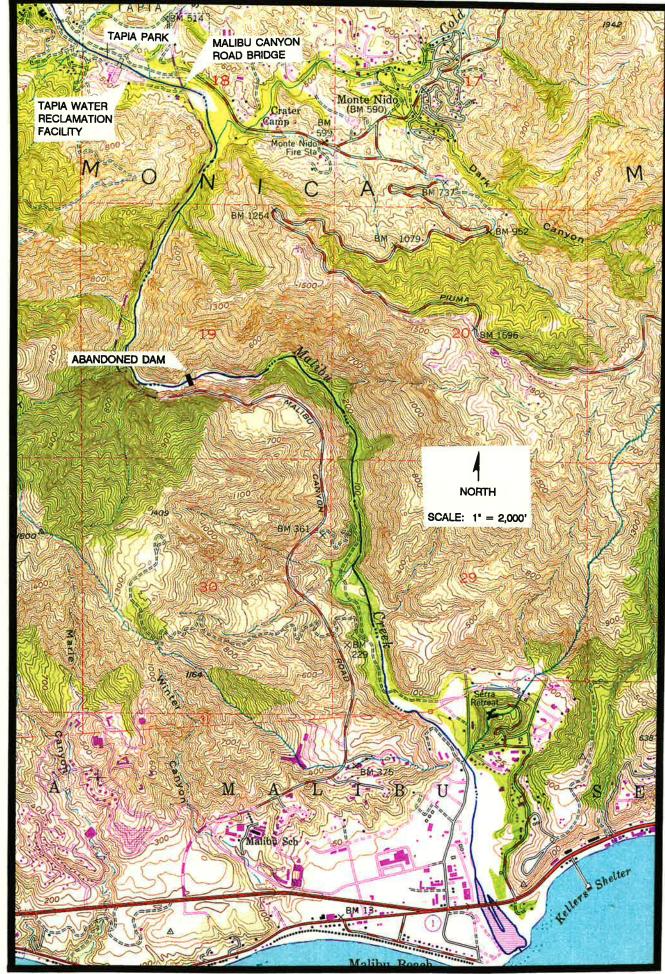
Figure 1.1 Location Map	2
Figure 1.2 Floodplain Boundary from Los Angeles County Flood Control	
District.	3
Figure 2.1 Malibu Creek Streambed Profile.	6
Figure 2.2 Malibu Creek Bed Profile near Tapia Water Reclamation Facility.	7
Figure 3.1 Results of Hydrologic Verification Study.	11
Figure 4.2 Malibu Canyon Road Bridge Looking Downstream	
Ffgure 4.3 North Overbank Floodplain	15
Figure 4.4 Typical Main Channel Vegetation	16
Figure 4.5 Typical Main Channel Vegetation	16
Figure 4.6 Debris Blockage Caused by Willow Growth	17
Figure 4.7 Typical Overbank Soil	17
Figure 5.1 Computed Water Surface Profile Plots.	24

1.

1.0 INTRODUCTION

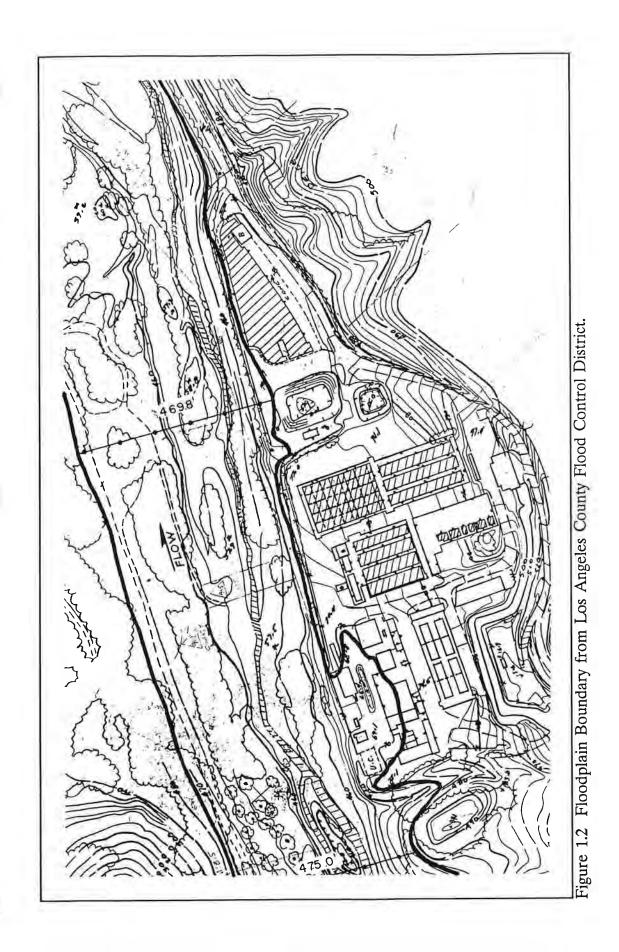
15.0

The Tapia Water Reclamation Facility is located in Los Angeles County on the south bank of Malibu Creek, just upstream of the Malibu Canyon Road Bridge (see Figure 1.1). Across from the plant is a park which becomes partially flooded during high flows. Along the low flow channel of Malibu Creek is an intermittent corridor of willow vegetation.


A floodplain delineation study was performed by the Los Angeles County Flood Control District in 1965. This study indicated that the Tapia Water Reclamation Facility was outside of the floodplain boundary except for some storage buildings on the northwest corner of the plant (see Figure 1.2). Subsequent to this study, a floodwall was constructed on this part of the site so that the entire facility would be outside of the floodplain.

In December, 1989, Rivertech, Inc. was contacted in order to perform additional floodplain evaluation studies for Malibu Creek near the Tapia Water Reclamation Facility. The objective of this study is to provide an updated analysis of the floodplain elevation which addresses the following factors:

- 1. The effect of upstream development in the Malibu Creek Watershed on the design hydrology.
- 2. The effect of willow vegetation along the low flow channel on the floodplain elevation.
- 3. The effect of debris blockage at the Malibu Canyon Road bridge on the floodplain elevation.


By addressing each one of these factors, an updated floodplain boundary will be determined. This will then be compared to the existing bank elevations along the Tapia Water Reclamation Facility to determine if additional flood protection measures are required.

The structure of this report is first an outline of background information on Malibu Creek and the surrounding watershed. Second is a discussion of the design hydrology. Third is an evaluation of channel vegetation impacts. Fourth is the computation of floodplain elevations. This is followed by a list of study conclusions.

1

PC.

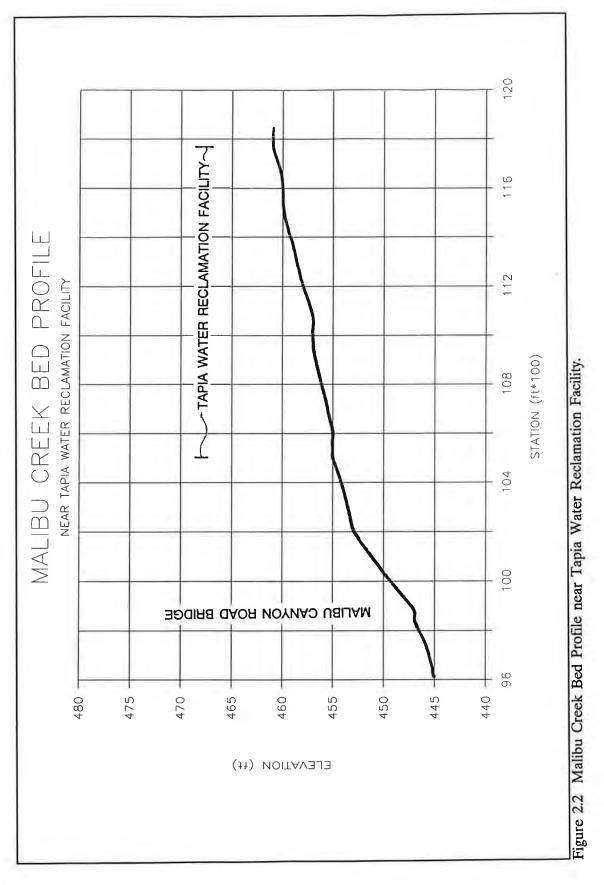
ŝ

2.0 MALIBU CREEK BACKGROUND INFORMATION

The Malibu Creek watershed covers approximately 120 square miles in Los Angeles and Ventura Counties (see Plate 1). Most of the drainage area is comprised of steep undeveloped terrain. The State Highway 101 corridor in the north part of the basin is the focus of the vast majority of the development that will occur in the watershed. The southern part of the basin is much steeper and precludes high density development. Most of this area will be left in its natural state or will have large residential lots which do not increase runoff to any significant degree.

The Tapia Water Reclamation Facility is located on the south bank of Malibu Creek just upstream of the Malibu Canyon Road bridge. The facility is approximately 5 miles upstream of the coast. Approximately 3 miles upstream of the coast is a dam and a reservoir which are completely filled with sediment deposits. The spillway crest elevation of this dam is 289 feet. All hydraulic analysis done in this study starts the dam because it acts as a hydraulic control.

Figure 2.1 shows a profile plot of the Malibu Creek streambed. The abandoned dam is the reference point for the stations on the profile plot. There are two reservoirs (Century and Malibu) upstream of the Tapia facility. Also, at approximately Station 75+00, there is a noticeable change in the slope of the riverbed. Downstream from this point, the average slope is 3.1%. Upstream from this point, the average slope is 0.5%.


Figure 2.2 shows an enlarged profile plot of the streambed in the vicinity of the Tapia facility. In general, flow depths can reach 16 to 18 feet before overtopping the south bank. The Malibu Canyon Road bridge is at Station 98+40. The bridge has three spans and two concrete piers in the channel.

Across the channel from the water reclamation facility is Tapia Park. A portion of this park is flooded during large events. The flood overbank area of the park consists of sparse perennial grasses and scattered sycamore trees. The willow vegetation in the Malibu Creek Channel does not spread to the overbank area because of park maintenance and seasonal use by park-goers.

The local watershed near the Tapia Water Reclamation Facility is effectively undeveloped. The terrain is very steep and covered with sagebrush and native grasses. Historical floods in the area occasionally remove the channel vegetation. This happened at least two times recently. Once in 1969 and again in 1983. The watershed area for Malibu Creek at the Malibu Canyon Road bridge is approximately 95 square miles. Plate 1 shows a map of the watershed boundary. the watershed is primarily in Los Angeles County with the northwest corner extending into Ventura County. The majority of land area which drains into Malibu Creek is in the Santa Monica Mountains National Recreation Area. The Highway 101 corridor is the focus of urbanization within the watershed. There are also several small reservoirs along Malibu Creek around which residential development will congregate.

600 400 PROFILE Malibu Lake (STATION 0+00 IS AT ABANDONED DAM) Century Reservoir STATION (ft*100) 200 Las Virgennes Ck/Confluenc MALIBU CREEK C Malibu Cyn Rabi Bridgeill 0 Abandoned Dam 0 Ocean -200 200 100 400 600 500 300 700 006 800 (ff) NOITAVAJA

Figure 2.1 Malibu Creek Streambed Profile.

3.0 HYDROLOGY

As part of this study, the design hydrology was investigated. Typically, flood plain boundaries are determined using the 100-year discharge or the discharge which has a one percent probability of occurring in any particular year. This discharge is usually determined by a regression analysis of <u>measured</u> peak historical discharges. In Los Angeles County, the adopted design discharge is the <u>computed</u> runoff for the Capitol Storm Event. This storm event has an approximate 50-year recurrence interval or a two percent chance of occurring in any particular year. The peak runoff rate from this storm is know as the capitol flood. In general, the computed capitol flood discharge is much higher than the 100-year discharge determined by the regression analysis of gaged stream flow data. Before the capitol flood discharge is used for design purposes, an adjustment is made to account for increased runoff caused by a burned watershed and for flow bulking caused by entrainment of sediment.

Both the U.S. Army Corps of Engineers and the Federal Emergency Management Agency (FEMA) use the 100-year discharge for flood plain analysis. In order to arrive at a conservative determination of the floodplain boundary for Malibu Creek, and to be in conformance with Los Angeles County regulations, the burned and bulked condition capitol flood discharge will be used for this study.

3.1 Existing Studies

The Los Angeles County Flood Control District performed a floodplain study for Malibu Creek in 1965. Floodplain Map Nos. 104-ML-8 and 104-ML-9 were obtained from the county. The maps indicate that the design discharge for Malibu Creek near the Tapia Water Reclamation Facility is 41,800 cfs. this discharge was verified through a telephone conversation with Mr. Paul Cornish of the Hydrology Section, Los Angeles County Department of Public Works. The discharge includes the effects of future development in the watershed as well as the effects of burning and sediment bulking

3.2 Verification of Design Discharge

Because the hydrologic calculations referenced above are not available for public review, a simple verification study was performed using the current Los Angles County and Ventura County Land Use Plans to determine the ultimate amount of development in the watershed. Three conditions were examined: 1) The 1990 existing amount= of development, 2) The ultimate amount of development, and 3) The ultimate amount of development with burning and sediment bulking adjustments.

3.2.1 Procedures for 1990 Condition

The location of the concentration point is on Malibu Creek just above the confluence of Cold Creek. The drainage area at this point on the stream is 95.0 square miles. Malibu Creek watershed is a valley surrounded by coastal mountains. Elevations range from 460 ft. at the outlet of the basin to 2,500 ft. in the mountains.

The HEC-1 flood hydrograph package is used to develop hydrographs for the Malibu Creek Watershed. The 24-hour capitol precipitation event is calculated by using the rainfall plates in the Los Angeles county Hydrology Manual. The storm total depth was computed to be 10.0 inches. The storm pattern was taken directly from the rainfall mass curves presented in the Los Angeles County Hydrology Manual.

Loss rates for existing conditions are estimated by using the infiltration tables in the hydrology manual, which are based on different soil types and rainfall intensities. An average loss rate of 0.35 inches/hr was selected for the basin based on existing soils and land cover. Percent imperviousness under 1990 conditions in the basin was estimated at 6 percent.

The SCS unit hydrograph was utilized to transform rainfall excess into runoff. The SCS unit graph procedure requires an estimation of the watershed Lag. Lag is defined as being 60 percent of the time of concentration. (t_c) :

 $Lag = 0.6 t_c$

The time of concentration (t_c) of the basin is estimated by evaluating the hydraulically most remote flow path in the watershed. This flow path includes overland flow, shallow channel flow, and main channel flow. The time of concentration is estimated to be 6.7 hours. Therefore, watershed Lag = 4.0 hours. Baseflow flow is assumed to be around 65 cfs at the beginning of the event. The magnitude of the baseflow will have little effect on the peak flow results for this event.

3.2.2 Procedures for Ultimate Development Condition

Future land use is estimated from the Malibu/Santa Monica development policy map and the Ventura County general Plan, south half. A new percent impervious is estimated to be approximately 20 percent of the basin. The watershed Lag is reduced to account for the increase in impervious area. The new Lag was computed as Lag = 3.6 hours. A rainfall loss rate of 0.35 in/hr is used.

The third analysis is to evaluate future land use conditions with additional assumptions that the watershed had recently experienced forest fires and sediment bulking occurs. This

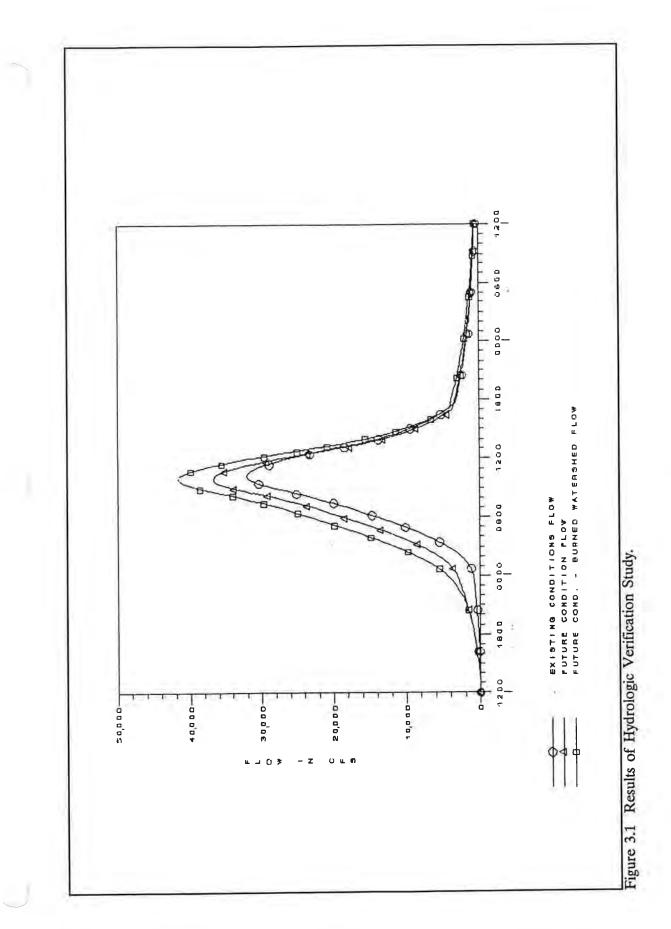
assumption results in decreased loss rates. A loss rate of 0.25 inches/hr is used for this analysis.

3.2.3 Results of Hydrologic Verification

Existing and future condition models were developed with the HEC-1 flood hydrograph package. the results of the three scenarios are shown in table 3.1

1990 Conditions	Future Land Use	Future Land use Burned Watershed Sediment Bulking
32,081 cfs	36,859 cfs	41,704 cfs

Table 3.1 Peak Flow Results


A plot of the three hydrographs is shown in Figure 3.1. The HEC-1 input and output data sets are included as an appendix to this report.

3.3 February, 1980 Flood

The period of record flood occurred on Malibu Creek in mid-February, 1980. Measured streamflow at Los Angeles County Station F130-R indicated a peak instantaneous discharge of 34,000 cfs upstream in Malibu Creek adjacent to the Tapia facility and 42,000 cfs downstream from the Cold Creek confluence. The Cold Creek drainage area is approximately 10 square miles compared to 95 square for Malibu Creek but for the 1980 flood, it contributed approximately 20% of the total discharge.

3.4 Conclusion

The future land use/burned condition discharge of 41,704 cfs is in very close agreement with the 41,800 cfs computed by Los Angeles County. This study will use 41,800 cfs as the design discharge for flood plain determination. In order to incorporate measured gage data from the 1980 flood, the discharge will be increased to 52,250 cfs at the Cold Canyon confluence. This allows for an inflow from Cold Creek that is 20% of the total discharge. The total discharge includes the effects of all existing and future urbanization in the watershed as well as the effects of forest fires and sediment bulking.

4.0 DETERMINATION OF CHANNEL ROUGHNESS

Channel roughness and related factors cause energy loss in flowing water which results in an increase in flow depth. The degree to which energy loss occurs in a channel is usually expressed as a Manning's n value. This ranges from 0.015 for a concrete channel to 0.1 or higher for a channel with dense vegetation throughout. Typically Manning's n values are determined by qualitative judgement based on field observations. For this study, a method developed by the Federal Highway Administration is used which provides a more direct and systematic technique for determining Manning's n values.

4.1 Description of Manning's *n* Value Determination

The technique outlined here was first described in a Federal Highway Administration report entitled <u>Guide for Selecting Manning's Roughness Coefficients for Natural Channels</u> and Flood Plains, prepared in 1984. The procedure is as follows:

- 1. Select a channel reach for study.
- 2. Divide the reach longitudinally into a main channel, a left, and a right flood plain overbank.
- 3. Select a base value n_b for a straight uniform, smooth channel in native materials.
- 4. Add a value n_1 to adjust for the effect of bed surface irregularities.
- 5. Add a value n_2 to adjust for variations in shape and size of the channel cross section.
- 6. Add a value n_3 to adjust for flow obstructions.
- 7. Add a value n_4 to adjust for vegetation other than that vegetation treated as a flow obstruction (For example, if n_3 is used to account for flow obstructions caused by trees in the channel, then n_4 needs only to account for bed contact vegetation).
- 8. Add a value n_5 to account for channel meandering.
- 9. Characterize the left and right floodplain overbank by repeating steps 3 through 8 or by using the vegetation density technique.

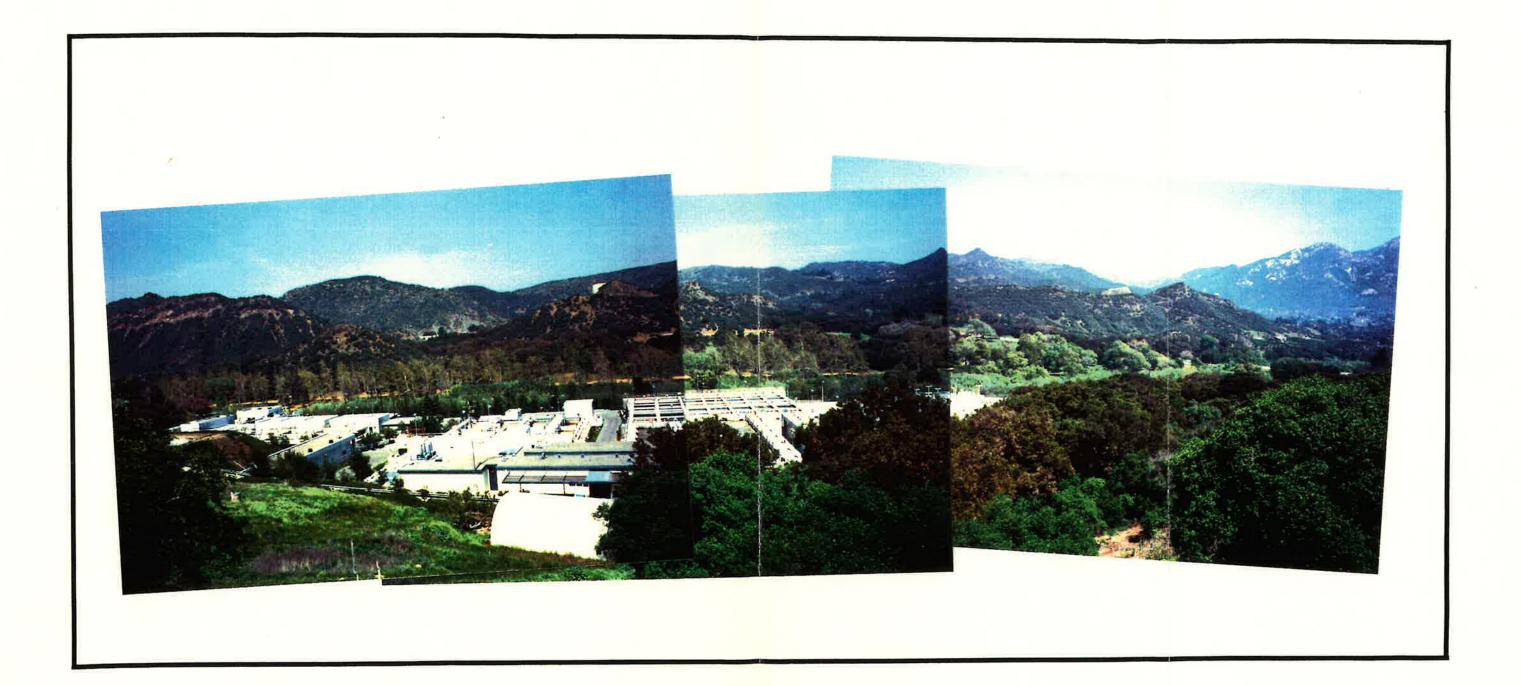
4.2 Description of Existing Channel Roughness Characteristics

The study reach for the detailed Manning's n determination is from the Malibu Canyon Road Bridge on the downstream end to a point approximately 200 feet upstream of the

Tapia Water Reclamation Facility. Downstream from the bridge, the channel becomes very steep and experiences supercritical flow (See Figure 2.1). Since critical depth is the minimum depth used in natural channel floodplain boundary analysis, the Manning's n values downstream of the bridge do not need to be determined to a high degree of accuracy.

Figure 4.1 shows a photograph of the study area with the water reclamation facility in the foreground. The Malibu Canyon Road Bridge is on the extreme right of the photo. The willow trees just beyond the plant are in the center of the channel. The larger trees beyond the willows are in Tapia Park which is in the Malibu Creek flood plain.

Figure 4.2 shows a close-up view of the bridge looking downstream. Currently, there is only minor vegetation growing under the bridge. A row of willow trees is growing on both sides of the low-flow channel all the way up to the bridge.


Figure 4.3 shows a typical view of the north flood plain overbank in Tapia Park. There is a clear delineation between the willow growth and the park. Figure 4.4 and 4.5 show a typical view of the main channel. Although there is dense willow growth along each edge of the low flow channel, flow is unobstructed in the center of the channel. Figure 4.6 shows an example of willow growth creating a debris blockage. This particular blockage is about 3 feet high. Such obstructions to flow are the main factor in determining the effect of vegetation on channel roughness. Figure 4.7 shows the typical soil type for both the main channel and the northern flood plain overbank. The soil is fairly compacted with a small amount of contact vegetation. Closer to the low flow channel, the soil has a higher content of gravel and rock. the southern bank along the reclamation facility has and approximate 2:1 slope and is covered with riprap.

4.3 Determination of Manning's *n* Values

For the main channel, 3 transect surveys were performed in order to determine the percentage of flow obstruction caused by the willow vegetation. The location of these transects are shown on Plate 2, the floodplain boundary maps. The percentage of maximum obstructed flow is listed below:

Transect No. 1 = 26%Transect No. 2 = 33%<u>Transect No. 3 = 35%</u> Average Flow Obstruction = 32%

According to the technique referenced above, the adjustment to account for a flow obstruction of 32% is approximately $n_3 = 0.025$. The base n_b value for the main channel is 0.026. The channel is fairly smooth with few irregularities thus $n_1 = 0.003$. There is

(

Figure 4.1 Photograph of Study Area

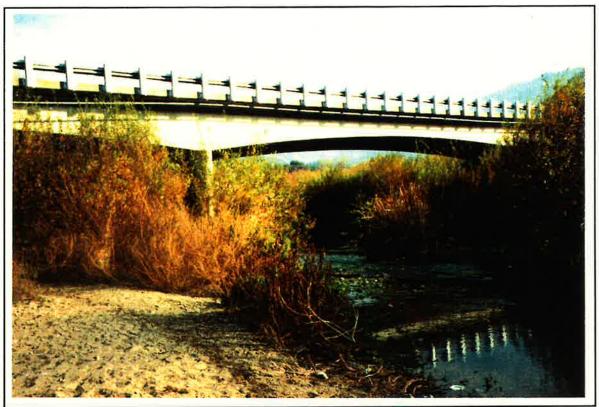


Figure 4.2 Malibu Canyon Road Bridge Looking Downstream

Figure 4.3 North Overbank Floodplain

Figure 4.4 Typical Main Channel Vegetation

Figure 4.5 Typical Main Channel Vegetation

Figure 4.6 Debris Blockage Caused by Willow Growth

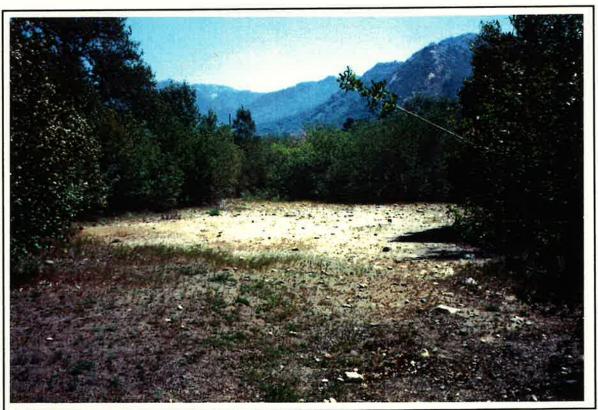


Figure 4.7 Typical Overbank Soil

virtually no change in the section width, therefore $n_2 = 0.0$. Other than willows, the main channel has a moderate amount of contact vegetation therefore $n_4 = 0.010$. There is no meandering for this river so $n_5 = 0.0$. The total value for the existing Manning's n 0.064. Willow growth will continue to occur in the main channel. It is estimated that the value of Manning's could increase by 50% within 5 to 10 years if no large floods occur to thin out the vegetation. Thus, for future conditions, a Manning's n value of 0.10 is used for the main channel.

The south bank, along the Tapia Water Reclamation Facility is covered with riprap and has little vegetation. For existing conditions, Manning's n = 0.035. For future conditions, if vegetation begins to grow on the riprap, this value is increased by 20% to 0.042. For the north overbank/floodplain region in Tapia Park, a vegetation density method was used to account for the presence of trees. The trees were counted and their average diameter was measured. Without the trees, the base value of Manning's n = 0.033. The vegetation density method relates the percentage of floodplain area obstructed by trees to the change in roughness. This value varies from 0.008 to 0.011. Thus the total Manning's n for the north floodplain overbank varied from 0.041 to 0.044. Because the park has a maintenance program and receives heavy public use, the value of Manning's n for this area is not expected to increase in the future.

The selection of n values is summarized below:

Existing	F	uture
Main Channel	0.064	0.100
South Bank	0.035	0.042
North Bank	0.041	0.041
(Tapia Park)	to	to
	0.044	0.044

4.4 Debris Effects at the Bridge

The County of Los Angeles requires the addition of 2 feet to the pier width of a bridge in order to account for debris accumulation in the hydraulic analysis. For high flows, the cumulative effect of debris can be accounted for by increasing the pier width. This decreases the available flow area and increases the head loss resulting in higher water surface elevations upstream. For this study, to simulate a reasonable maximum amount of debris accumulation, 4 feet is added to the width of each bridge pier for the existing conditions. For future conditions, 6 feet is added to the width of each pier to account for a potential increase in the amount of debris. During the course of this study, the issue arose of whether or not the bridge opening can be completely blocked by debris. If this occurred, then all the water would flow over the top of the bridge roadway in a weir-like fashion and no water would go through the opening. An examination of the upstream sources of debris, the design of the bridge opening, and the flow hydraulics indicate that a complete blockage of the bridge opening at Malibu Canyon Road is extremely unlikely. First, the primary type of debris is vegetation. Even very dense vegetative debris is still permeable and will allow a substantial amount of water to flow through it. Thus it is unlikely that such debris will completely seal off the bridge opening. Large boulders could also create a blockage but the stream cannot transport boulders of sufficient size due to the flatness of the upstream channel slope. Second, the bridge consists of two fifty foot wide spans and one eighty foot wide span. In order for a debris blockage to form that can withstand the hydrostatic pressure of the flow, the probable mechanism would be for several trees of sufficient length to get caught Other debris would then get trapped against these trees against two bridge piers. eventually forming a semi-permeable wall. This process would have to happen for each of the three bridge openings. From field inspections in the upstream channel, no trees of sufficient length to block the bridge openings were found. Because of these considerations, the pier width increase method will be used to provide a realistic, conservative estimate of the effect of debris blockage at the bridge.

5.0 HYDRAULIC ANALYSIS

The computer program HEC-2 is used to determine steady state backwater profiles for both existing and future conditions. There are places within the study reach that have a supercritical flow regime. Critical depth is computed for each section in supercritical flow regimes. For flood plain determinations in natural channels, critical depth is usually the lowest flow depth used. The hydraulic analysis starts at the spillway of the abandoned reservoir (Section 0+00) at the downstream end. Malibu Canyon Road Bridge is at Section 98+40. The Tapia Water Reclamation Facility starts at Section 106+10 and ends at Section 117+60.

The design discharge of 41,800 cfs upstream of Cold Canyon and 52,250 downstream of Cold Canyon is used for both the existing and future conditions. The Manning's roughness values used in the analysis are discussed in Chapter 4. The results of the analysis are shown in Table 5.1 for existing conditions and in Table 5.2 for future conditions. The discharge, flow depth, water surface elevation, bed elevation, and mean channel flow velocity are given for each cross section. Plate 2 shows the flood boundaries for both the existing and future conditions. In general, the downstream or western part of the facility has adequate protection from floods. The upstream or east end of the facility has a low spot near Section 115.15. For both existing and future conditions, some flooding occurs. This part of the plant consists primarily of utility buildings, however, so flooding would not result in an introduction of wastewater into Malibu Creek. The maximum computed water surface elevation at the upstream end of the plant (Section 117.60) is 475.77' for existing conditions and 477.38' for ultimate conditions. Figure 5.1 shows a water surface profile plot for Malibu Creek near the Tapia Water Reclamation Facility. The water surface profile computed by Los Angeles County is also shown on this figure for comparison purposes.

5.1 High Water Mark Correlation

Based on verbal communication with water district staff, two high water mark elevations were determined for the February, 1980 flood. The first is an elevation of approximately 470' near section 100.3. This was derived from the observation that the plant access road was under 1 to 3 feet of standing water during the peak of flooding. Furthermore, the Malibu Canyon Road bridge which has a top of road elevation of 472' was not overtopped. Roll waves in the center of channel did strike the bridge and splash up onto the roadway but a general overtopping did not occur. The second high water mark location is at the upstream or west end of the plant. A photograph of the storage building in this part of the plant showed the water line about 3 feet above the finish grade elevation of 470'. This would make the high water mark approximately 473'. The ultimate condition water surface matches the downstream high water mark of 470' quite closely. It is several feet higher than the upstream high water mark of 473' however. The reason is that there was very

little in-channel vegetation during the February, 1980 flood. The ultimate condition analysis assumes that much more vegetation is in place resulting in a higher n value and therefore the computed water surface is higher than the observed upstream high water mark.

5.2 Complete Debris Blockage of the Bridge

The effect on the water surface elevation of a complete debris blockage at the bridge as discussed in Section 4.4 was analyzed as part of the scope of work for this project. The bridge roadway was treated as a critical depth weir and no water was allowed to flow through the bridge opening. The top of the bridge roadway is at an approximate elevation of 472', more than 20 feet above the channel bed. The resulting water surface elevation upstream from the bridge is virtually flat with an approximate average water surface elevation of 481'. The blocked bridge acts as a dam and creates a ponding effect upstream which results in large flow depths and very small flow velocities.

5.3 Effect of Channel Maintenance on the Water Surface Profile

In order to estimate the effect of an in-channel maintenance program two additional water surface profiles were calculated. Both assume ultimate discharge conditions. The first case is for removal of 100% of the willow tree vegetation in the channel reducing the n value from 0.100 to 0.040. The removal of trees starts at the Malibu Canyon Road bridge and ends at the upstream end of the plant. There is a decrease in water surface elevation of approximately 4 feet at the upstream end of the plant and about 1 foot at the downstream end of the plant. This profile is shown as a dash-dot line on Figure 5.1. The second case is for the removal of 50% of the willow tree vegetation in the main channel reducing the There is a decrease in water surface elevation of n value from 0.100 to 0.070. approximately 2 feet at the upstream end of the plant and less than one foot at the downstream end. For vegetation removal of 25% there is virtually no difference in computed water surface elevations when compared to the ultimate water surface with no vegetation removal. Based on this analysis, channel maintenance adjacent to the plant can reduce the water surface elevations by 2 to 4 feet at the upstream end of the plant. There is only a small effect on the water surface elevation at the downstream end of the plant.

Table 5.1 F	Results of	Existing	Conditions	Hydraulic Analys	sis.
-------------	------------	----------	------------	------------------	------

SECTION NUMBER	DISCHARGE	FLOW DEPTH	WATER SURFACE	RIVER BED	CHANNEI FLOW
				N ELEVAT	
	(cfs)	(ft)	(ft)	(ft)	(ft/s)
.00	52250.00	14.02	303.02	289.00	21.20
1.50	52250.00	23.37	309.37	286.00	11.40
3.00	52250.00	23.29	309.29	286.00	12.95
7.50	52250.00	20.07	308.07	288.00	21.91
14.50	52250.00	25.15	315.15	290.00	13.25
20.50	52250.00	19.99	313.99	294.00	22.51
28.00	52250.00	20.37	320.37	300.00	23.59
35.00	52250.00	20.08	328.08	308.00	23.47
43.00	52250.00	17.43	353.43	336.00	22.02
48.50	52250.00	34.78	378.78	344.00	32.69
54.25	52250.00	23.74	393.74	370.00	24.05
59.50	52250.00	21.73	413.73	392.00	23.42
65.20	52250.00	23.32	435.32	412.00	25.12
77.00	52250.00	17.98	451.98	434.00	21.78
86.00	41800.00	21.12	461.12	440.00	8.00
91.00	41800.00	18.99	460.99	442.00	13.96
93.50	41800.00	19.11	463.11	444.00	11.28
96.10	41800.00	19.12	464.12	445.00	11.04
97.00	41800.00	17.35	463.35	446.00	15.84
97.60	41800.00	17.90	463.90	446.00	16.16
98.40	41800.00	17.13	464.13	447.00	15.92
98.78	41800.00	18.21	465.21	447.00	14.78
99.33	41800.00	19.60	467.60	448.00	9.31
100.40	41800.00	18.28	468.28	450.00	7.39
102.00	41800.00	15.67	468.67	453.00	7.02
103.60	41800.00	15.00	469.00	454.00	7.55
104.95	41800.00	14.41	469.41	455.00	7.83
106.10	41800.00	14.36	469.36	455.00	8.50
107.90	41800.00	14.10	470.10	456.00	11.15
109.40	41800.00	14.17	471.17	457.00	11.09
110.65	41800.00	15.25	472.25	457.00	9.64
112.15	41800.00	14.92	472.92	458.00	10.80
113.65	41800.00	15.09	474.09	459.00	10.19
115.15	41800.00	14.89	474.89	460.00	10.11
116.45	41800.00	15.45	475.45	460.00	10.32
117.60	41800.00	14.77	475.77	461.00	11.72
118.50	41800.00	15.41	476.41	461.00	10.60

SECTION NUMBER	DISCHARGE	FLOW DEPTH	WATER SURFACE	RIVER BED	CHANNE FLOW
			ELEVATIO	ON ELEVAT	ION VEL.
	(cfs)	(ft)	(ft)	(ft)	
.00	52250.00	14.02	303.02	289.00	21.20
1.50	52250.00	23.79	309.79	286.00	9.66
3.00	52250.00	23.91	309.91	286.00	11.09
7.50	52250.00	22.20	310.20	288.00	17.28
14.50	52250.00	25.91	315.91	290.00	11.75
20.50	52250.00	22.78	316.78	294.00	18.07
28.00	52250.00	22.71	322.71	300.00	19.14
35.00	52250.00	21.02	329.02	308.00	21.11
43.00	52250.00	17.21	353.21	336.00	21.54
48.50	52250.00	33.28	377.28	344.00	29.75
54.25	52250.00	23.64	393.64	370.00	23.59
59.50	52250.00	21.59	413.59	392.00	22.90
65.20	52250.00	23.21	435.21	412.00	23.82
77.00	52250.00	19.58	453.58	434.00	19.03
86.00	41800.00	21.70	461.70	440.00	5.89
91.00	41800.00	20.47	462.47	442.00	11.36
93.50	41800.00	20.79	464.79	444.00	8.32
96.10	41800.00	20.99	465.99	445.00	7.92
97.00	41800.00	19.98	465.98	446.00	9.88
97.60	41800.00	20.53	466.53	446.00	10.14
98.40	41800.00	18.91	465.91	447.00	14.44
98.78	41800.00	19.82	466.82	447.00	13.65
99.33	41800.00	20.56	468.56	448.00	6.72
100.40	41800.00	19.71	469.71	450.00	5.03
102.00	41800.00	16.96	469.96	453.00	4.83
103.60	41800.00	16.31	470.31	454.00	5.23
104.95	41800.00	15.78	470.78	455.00	5.5
106.10	41800.00	15.85	470.85	455.00	4.9
107.90	41800.00	15.33	471.33	456.00	8.0
109.40	41800.00	15.56	472.56	457.00	8.0
110.65	41800.00	16.54	473.54	457.00	6.9
112.15	41800.00	16.45	474.45	458.00	7.6
113.65	41800.00	16.61	475.61	459.00	7.2
115.15	41800.00	16.44	476.44	460.00	7.1
116.45	41800.00	17.07	477.07	460.00	6.5
117.60	41800.00	16.38	477.38	461.00	7.3
118.50	41800.00	17.10	478.10	461.00	7.1

Table 5.2 Results of Ultimate Condition Hydraulic Analysis.

6.0 CONCLUSIONS

Based upon the results of this study the following conclusions are made.

1. The design discharge of 41,800 cfs upstream of Cold Creek and 52,250 cfs downstream of Cold Creek adequately portrays the runoff from the capitol flood with the ultimate amount of development in the Malibu Creek watershed. It also includes the effects of burns and sediment bulking.

2. The presence of willow vegetation in the Malibu Creek low-flow channel increases the computed water surface elevation above those shown on the Los Angeles County Floodplain Maps.

3. The Malibu Canyon Road bridge piers will trap debris during a flood resulting in head loss and a higher upstream water surface elevation. Complete blockage of the bridge opening by debris is unlikely, however because of the absence of trees with sufficient length to be trapped by the bridge piers.

4. For existing and ultimate conditions, the downstream (east) part of the Tapia Water Reclamation facility has sufficient protection from floods. Some flooding will occur on the upstream (west) side of the facility. This part of the plant consists primarily of utility buildings, however, so flooding would not result in an introduction of wastewater into Malibu Creek. The maximum computed water surface elevation at the upstream end of the plant (Section 117.60) is 475.77' for existing conditions and 477.38' for ultimate conditions.

5. The computed water surface profiles are in general agreement with high water marks observed during the February, 1980 flood.

6. Based on the analysis for willow tree removal, channel maintenance adjacent to the plant can reduce the water surface elevations by 2 to 4 feet at the upstream end of the plant for willow tree removal percentages of 50% and 100% respectively. There is only a small effect on the water surface elevation at the downstream end of the plant.

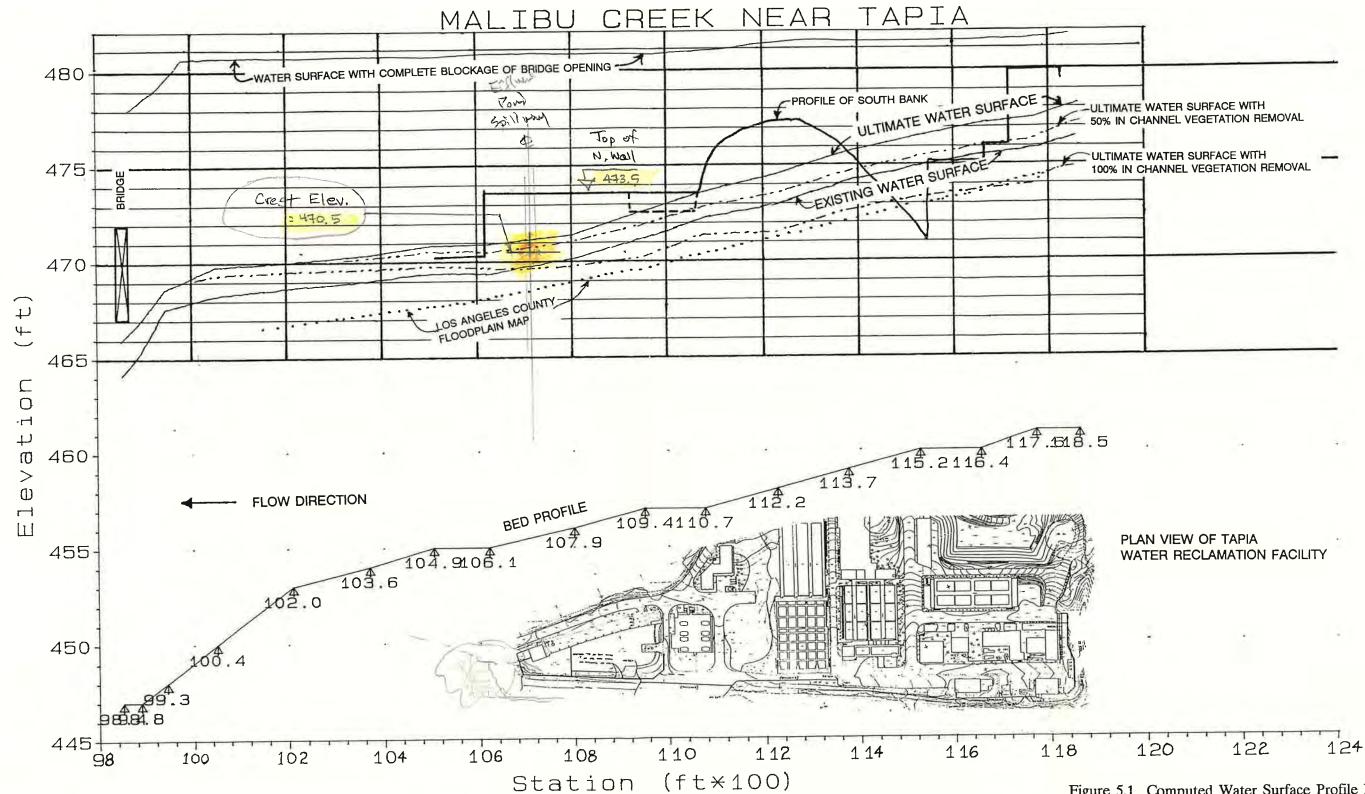
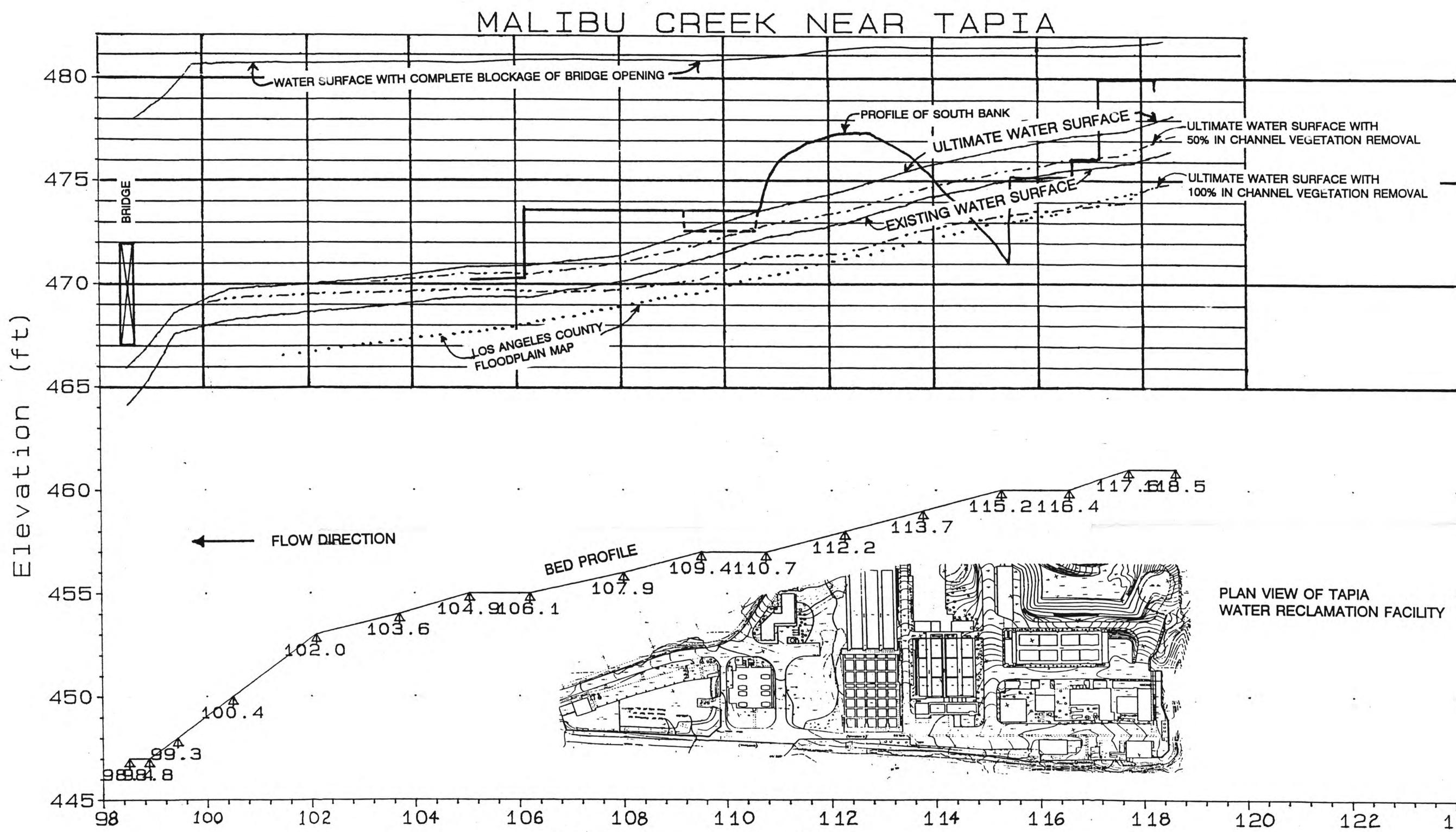
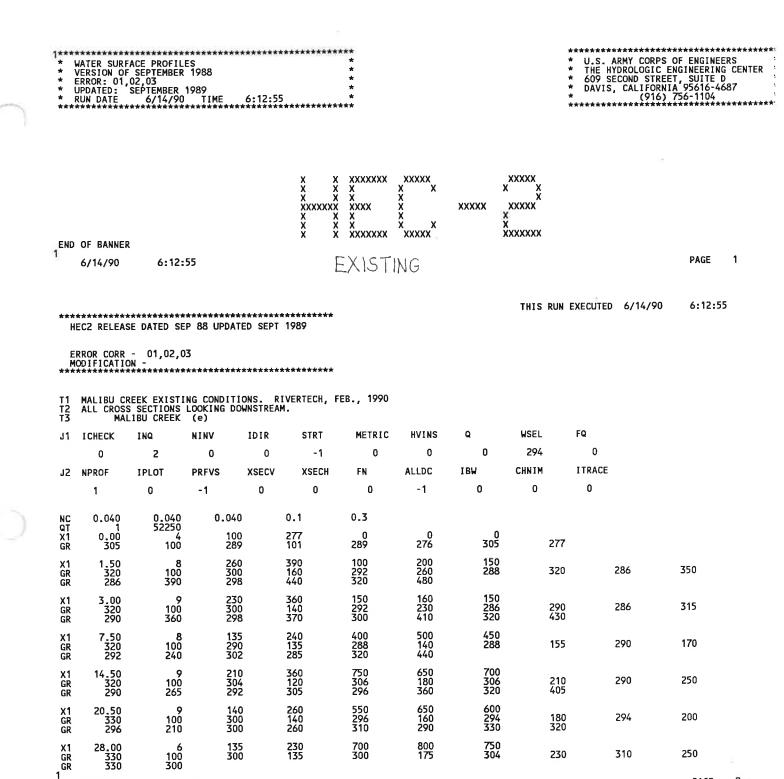



Figure 5.1 Computed Water Surface Profile Plots.

- - - -

-

Station (ft*100)


	-		
CE	ULTIMATE	WATER SURFACE WITH	
	ULTIMATE	WATER SURFACE WITH HANNEL VEGETATION REMOVAL	-

124

RIVERTECH, INC.

APPENDIX 1

MALIBU CREEK HYDRAULIC ANALYSIS FOR EXISTING CHANNEL CONDITION

PAGE 2

GR X1 GR GR

X1

X1 GR GR

X1 GR GR

X1

6/14/90

35.00

43.00

48.50

54.25

59,50

6:12:55

GR GR	420 420	100 290	400	140	392	160	392	205	400	245	
X1 GR GR	65.20 460 420	7 100 230	145 420 460	230 130 280	570 414	570 145	570 412	165	414	190	
X1 GR GR	77.00 470 470	6 100 370	145 440	285 145	1180 434	1180 220	1180 434	270	440	285	
QT NC	1 0.040	41800 0.040	0.050	470	900	600	700			25	
QT NC X1 GR GR	86.00 470 450 454	41800 0.040 12 100 470 840	0.050 310 460 460 470	470 250 490 880	900 450 460	600 310 520	700 440 452	360 570	440 452	425 760	
X1 GR GR	91.00 480 442	10 100 345	215 460 450	370 140 370	500 450 463	450 215 410	500 444 464	250 730	442 480	315 790	
X1 GR GR GR	93.50 480 444 470	12 100 330 745	270 470 444 480	435 130 395 790	290 460 450	160 145 435	250 458 463	210 470	448 463	270 685	
X1 GR GR	96.10 480 445 480	11 100 430 700	305 460 445	505 140 460	290 460 456	230 235 505	260 454 460	305 540	450 470	360 650	
GR 1	480 6/14/90	700 6:12:55								PAGE	3
X1	97.00	13	325	490	110	85 190	,90	280	154	325	
GR GR GR	97.00 480 454 460	13 100 355 530	325 466 450 470	490 135 435 600	110 462 446 480	465 720	90 460 446	280 485	456 450	325 490	
X1 GR GR GR	97.60 480 454 448	14 100 390 520	355 470 454 462	520 130 415 521	60 462 452 470	60 175 440 680	60 460 446 480	285 485 735	456 446	355 510	
X1 GR GR GR	98.40 468 468 447 450	18 100 156_1 239 275	100 454 468 468 448	302 100.1 162.9 239.1 301.9	40 454 452 468 468	40 125 163 245.9 302	40 452 450 447	130 190 246	452 448 448	156 220 265	
GR X1	450 98.78	275 0	448	301.9	468 38	302 38	38				
NC X1 GR GR GR GR	0.040 99.33 480 450 448 480	0.035 16 100 480 645 900	0.050 490 472 448 448	645 265 490 660	55 470 448 462	55 415 505 685	55 468 450 466	435 570 700	455 450 470	435.1 635 800	
NC X1	0.041 100.40	0.035	0.064 535 470	680	70	120 255	107 462	350	460	480	
GR GR GR GR	480 454 450 480	100 500 695 850	470 450 460	200 535 710	466 450 464	235 570 735	452 470	595 755	450 472	680 810	
X1 GR GR GR	102.00 480 456 466	14 100 450 710	480 472 454 470	670 190 480 720	80 462 454 470	160 260 550 760	160 460 453 480	330 650 780	458 454	425 670	
X1 GR GR GR	103.60 480 458 456	15 100 455 685	475 472 456 460	685 210 475 705	130 464 456 468	130 260 520 720	160 462 454 468	290 645 775	460 454 480	395 665 780	
X1 GR GR GR	104.95 480 458 456 480	16 100 515 695 865	515 470 456 456	750 280 600 750	135 464 456 462	135 350 640 780	135 462 455 468	380 675 790	460 455 468	490 685 835	
GR 1	480 6/14/90	6:12:55								PAGE	4
X1 GR	106.10 480	13 100 (85	640 472 456	695 190 550 725	115 470 456 480	115 280 640	115 466 455	360 670	460 455	455 685	
GR GR	480 458 456	485 695	456 472 340			726	180				
X1 GR GR	107.90 480 456	10 100 390	340 470 456	510 140 495	160 466 458	190 195 510	460 472	320 530	456 480	340 531	
X1 GR GR	109.40 480 458	14 100 300	295 468 457	485 135 315	150 466 457	150 180 340	150 462 458	270 400	460 458	295 470	

GF	a 460	4	85	470	500	472		520	480	521		
X1 GF GF	₹ 480 ₹ 457	1	12 00 315 510	300 470 457 480	480 140 340 511	125 466 458		125 195 365	125 460 458	275 445	458 460	300 480
NC X' GI GI GI	112.15 8 480 8 458		035 12 100 380 560	0-064 355 470 458 480	535 215 415 661	150 468 460		150 250 470	150 462 462	315 535	460 476	355 580
X GI GI GI	1 113.65 8 480 8 459		11 100 335 526	295 470 459	480 165 359	150 468 460		150 200 370	150 462 462	275 480	460 474	295 525
X GI GI	२ 480) '	10 100 300	280 470 460	450 145 350	150 468 462		150 180 450	150 466 470	195 475	462 480	280 476
X GI GI	r 480) '	10 100 405	350 470 460	445 170 440	130 468 462		130 195 445	130 464 468	280 475	461 480	350 476
X GI GI	R 480) '	10 100 340	310 472 461	395 125 370	115 468 462		115 160 395	115 466 472	250 435	462 480	310 436
X G G	R 480 R 462		11 100 295 460	275 472 461	390 125 360	90 468 461		90 175 390	90 468 462	250 415	466 466	275 430
1	6/14/90) 6	:12:55									PAGE
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR I WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST		
0 0 3 0 *		.100 CEHV DO CAL DEPTH 14.02 0. .00 0.	= .3(ASSUMED 303.02 52250. 21.20 0.	303.02 0. .00 0.	L CROSS SE 294.00 0. .000 0	309.99 2465. .040 16	6.98 0. .000 0	.00 0. .000 .00	.00 0. 289.00 176.75	305.00 305.00 100.12 276.88		
3	302 WARNI	NG: CONV	EYANCE C	HANGE OUTS	IDE OF AC	CEPTABLE R	RANGE, K	RATIO =	2.70			
0	1.500 52250. .00 .001599	23.37 11691. 7.96 100.	309.37 31557. 11.40 150.	302.41 9002. 9.13 200.	.00 1468. .040 4	311.03 2768. .040 11	1.66 986. .040 0	.51 13. .000 .00	.53 1. 286.00 328.77	292.00 286.00 131.90 460.67		
0	SECNO 3.0 3.000 52250. 01 .002078 SECNO 7.5	23.29 11721. 9.14 150.	309.29 35717. 12.95 150.	4813. 7.92	.00 1283. .040 3	311.45 2758. .040 19	2.16 608. .040 0	.27 30. .000 .00	.15 2. 286.00 297.88	292.00 290.00 121.41 419.29		
	301 HV CH		E THAN H	VINS								
	7185 MINIM 720 CRITI 7.500 52250. .01 .007487			308.07 8898. 13.54	.00 191. .040 0	314.52 1878. .040 15	6.44 657. .040 0	1.60 68. .000 .00	1.28 5. 288.00 223.39	290.00 292.00 113.91 337.30		
Ĩ	6/14/9	0 6	:12:55									PAGE
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR I WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA L ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST		

*SECNO 14.500

1.5

3302 WARNIN	G: CONVE	YANCE CHAI	NGE OUTSI	DE OF ACC	EPTABLE R	ANGE, KR/	ATIO = 1	.84	
14.500 52250. .03 .002221	25.15 7455. 7.76 750.	315.15 42299. 13.25 700.	309.59 2495. 7.26 650.	.00 961. .040 3	317.53 3192. .040 5	2.38 344. .040 0	2.60 126. .000 .00	-41 9. 290.00 289.83	306.00 296.00 106.07 395.90
*SECNO 20.5	00								
3301 HV CHA	NGED MORE	THAN HVI	NS						
7185 MINIMU 3720 CRITIC 20.500 52250. .04 .008219	M SPECIFI AL DEPTH 19.99 1384. 10.61 550.	C ENERGY ASSUMED 313.99 47019. 22.51 600.	313.99 3846. 13.66 650.	.00 130. .040 0	321.33 2088. .040 15	7.34 282. .040 0	2.30 174. .000 .00	1.49 12. 294.00 174.63	300.00 300.00 121.35 295.98
*SECNO 28.0 7185 MINIMU 3720 CRITIC 28.000 52250. .05 .007851	M SPECIFI		320.37 6080. 15.13 800.	.00 242. .040 0	328.06 1825. .040 5	7.69 402. .040 0	6.04 217. .000 .00	.10 15. 300.00 164.69	300.00 304.00 111.24 275.92
0 *SECNO 35.0 7185 MINIMU 3720 CRITIC 35.000 52250. .06 .008699 0	M SPECIFI	C ENERGY ASSUMED 328.08 45732. 23.47 700.	328.08 2823. 12.96 750.	.00 272. .040 0	335.91 1948. .040 5	7.83 218. .040 0	5.82 257. .000 .00	.04 18. 308.00 164.23	310.00 310.00 119.87 284.10
1 6/14/90	6:	12:55							
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LE ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST
*SECNO 43.0	000								
3301 HV CHA	NGED MORE	E THAN HVI	NS						
7185 MINIMU 3720 CRITIC 43.000 52250. .07 .008435	JM SPECIF CAL DEPTH 17.43 2603. 11.56 800.	IC ENERGY ASSUMED 353.43 47008. 22.02 800.	353.43 2638. 12.20 800.	.00 225. .040 0	360.42 2135. .040 11	6.99 216. .040 0	6.85 303. .000 .00	.08 21. 336.00 191.61	340.00 338.00 116.44 308.05
0 *SECNO 48.5	500								
3301 HV CH/	ANGED MOR	E THAN HVI	INS						
7185 MINIMU 3720 CRITIC 48.500 52250 07 006819	JM SPECIF CAL DEPTH 34.78 16124. 20.13 550.	IC ENERGY ASSUMED 378.78 28419. 32.69 550.	378.78 7707. 15.30 550.	.00 801. .040 0	390.28 869. .040 17	11.50 504. .040 0	4.16 333. .000 .00	1.35 23. 344.00 97.55	344.00 344.00 101.43 198.98
*SECNO 54.2	250								
3301 HV CH	ANGED MOR	E THAN HV	INS						
7185 MINIM 3720 CRITI 54.250 52250. .08 .007887	UM SPECIF CAL DEPTH 23.74 1493. 10.55 425.	IC ENERGY ASSUMED 393.74 48668. 24.05 425.	393.74 2089. 11.07 425.	.00 142. .040 0	402.23 2024. .040 19	8.49 189. .040 0	3.11 355. .000 .00	.30 24. 370.00 148.08	380.00 380.00 109.39 257.48
0 *SECNO 59.	500								
3301 HV CH	ANGED MOR	E THAN HV	INS						
7185 MINIM 3720 CRITI 59.500 52250. .08 .007823 0	UM SPECIF CAL DEPTH 21.73 2077. 11.02 525.	IC ENERGY ASSUMED 413.73 47803. 23.42 525.	413.73 2370. 11.18 525.	.00 188. .040 0	421.68 2042. .040 11	7.95 212. .040 0	4.12 384. .000 .00	.05 26. 392.00 163.35	400.00 400.00 112.54 275.89
1 6/14/9	o 6	:12:55							
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA L ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST

PAGE 7

PAGE 8

*SECNO 65.200 3301 HV CHANGED MORE THAN HVINS 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 65.200 23.32 435.32 52250. 6962. 43654. .09 19.18 25.12 .008261 570. 570. 414.00 420.00 118.51 249.16 9.01 147. .040 4.58 415. .000 .32 00 444.33 435.32 363. 1738. 1633. 11.13 570. 412.00 8 .00 130.65 0 *SECNO 77.000 3301 HV CHANGED MORE THAN HVINS 9.94 451.98 48946. 21.78 1180. 440.00 .00 108. .040 458.99 2247. .040 7.01 203. .040 .20 451.98 32. 434.00 191.92 440.00 127.03 318.95 2222 10.93 480. .000 00 .008599 1180. 1180. 15 0 *SECNO 86.000 3301 HV CHANGED MORE THAN HVINS 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.89 .62 38. 440.00 624.57 450.00 450.00 233.22 857.80 461.12 23228. 8.00 700. .00 376. .040 2.29 461.90 .78 2857. 86.000 21.12 456.27 2904. .050 10 1786. 4.74 900. 16786. 5.87 600. 41800 .040 .000 .00 .001545 n n *SECNO 91.000 3301 HV CHANGED MORE THAN HVINS 1 6/14/90 6:12:55 EG ACH XNCH OLOSS BANK ELEV WSELK ALOB нv H1 SECNO DEPTH CWSEL CRIWS AROB TWA LEFT/RIGHT ELMIN SSTA VÕL ۵ QLOB VLOB **OCH** OROB XNR I CONT TIME VCH VROB XNL UTN CORAR TOPWID ENDST SLOPE XLOBL XLCH X1 OBR ITRIAL IDC .54 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .00 450. .040 463.77 2603. .050 2.78 186. .040 1.27 599. .000 .60 450.00 457.47 91.000 18.99 460.99 43. 442.00 265.79 450.00 138.02 41800 3951. 8.78 500. 36349. 1500. 403.81 .005209 500. 450. 15 .00 0 0 *SECNO 93.500 3301 HV CHANGED MORE THAN HVINS 448.00 450.00 140.33 685.94 93.500 41800. .15 463.11 32858. 11.28 250. 464.87 2913. 1.76 255. .040 1.00 .10 19.11 7304. 8.29 .00 457.80 1638. 6.42 160. 881. .040 620. 444.00 050 .003147 .00 545 61 290. 0 *SECNO 96.100 96.100 41800. .01 48. 445.00 453.62 454.00 456.00 131.75 585.37 .90 464.12 33301. 11.04 260. .00 908. .040 19.12 460.91 465.79 3017. 1.66 1967. 6.39 230. 6532. 7.20 290. 308 .040 .000 .050 .003739 .00 0 *SECNO 97.000 3301 HV CHANGED MORE THAN HVINS 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .61 463.05 5235. 14<u>.</u>00 .53 653. .000 456.00 450.00 171.27 97.000 41800. 17.35 4186. 8.97 110. 463.35 32379. 15.84 90. 3.52 374. .56 .00 466.88 .56 49. 446.00 467. 2045. .040 16 .010045 85. .00 382.26 553.53 0 0 *SECNO 97.600 .60 657. .000 456.00 463.90 34233. 16,16 463.71 153. 3.40 467.50 2119. 3.59 02 .00 97.600 41800. 17.90 50. 448.00 7415. 9.98 60. 743. .040 .050 164.30 558.82 .040 446.00 16 394.52 .009882 60. 60. .00 n 0 6/14/90 6:12:55 BANK ELEV

CRIWS QROB

VROB

XLOBR

WSELK

ALOB XNL ITRIAL

EG

ĂĊH XNCH

IDC

SECNO

SLOPE

Q TIME

DEPTH

QLOB VLOB

XLOBL

CWSEL

OCH. VCH

XLCH

PAGE 9

PAGE 10

OLOSS

TOPWID

TWA LEFT/RIGHT ELMIN SSTA

ENDST

HV

AROB

I CONT

XNR

KL

VOL

CORAR

*SECNO 98.400 3265 DIVIDED FLOW 468.00 468.00 100.03 301.98 3.94 0. 468.07 2625. .050 .47 660. .10 17.13 461.64 .00 98.400 464.13 41800. 15.92 40. 0. .000 41800. 447.00 188.27 16 .014062 40. 40. 00 0 *SECNO 98.780 3265 DIVIDED FLOW 3301 HV CHANGED MORE THAN HVINS .05 50. 447.00 188.30 468.00 468.00 100.02 301.99 .48 662. 3.39 468.60 98,780 18.21 465.21 461.64 .00 .000 .000 3 0. .00 38. 41800. ō. 41800 2828. 14.78 .000 .011327 38. 15 .00 0 *SECNO 99.330 3301 HV CHANGED MORE THAN HVINS 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 2.36 459.94 7380. 10.62 55. .22 667. 448.00 448.00 435.00 740.01 1.42 695. .035 .20 19.60 8042. 9.30 55. .00 469.02 99.330 41800. 467.60 26378. 9.31 55. 865. .040 3 2833. 448.00 .002042 14 ō .00 305,00 0 *SECNO 100.400 .21 677. .000 .04 51. 450.00 525.44 100.400 41800. .17 .00 2181. .041 469.27 2539. .064 450.00 468.28 462.97 .99 18.28 660. .035 450.00 223.79 749.23 16080. 7.37 70. 18770. 7.39 107. 6950. 10.53 .00 .002231 120. 21 01 6/14/90 6:12:55 OLOSS BANK ELEV TWA LEFT/RIGHT ELMIN SSTA TOPWID ENDST DEPTH CWSEL CRIWS **WSELK** EG ACH XNCH ΗV HL VOL SECNO ALOB XNL ITRIAL AROB XNR QLOB QCH VCH QROB **ŤIME** WTN VLOB XLOBL VROB ICONT XLOBR IDC CORAR XLCH SLOPE *SECNO 102.000 102.000 15.67 41800. 18806. .17 8.13 .002471 80. 469.58 2847. .064 11 454.00 454.00 213.33 716.67 468.67 19972. 7.02 160. 463.15 3022. 8.50 160. .00 2312. .041 2 .30 693. .000 .91 356. .035 .01 453.00 503.34 ñ .00 *SECNO 103.600 103.600 15.00 .40 711. .000 .00 .03 54. 454.00 546.64 456.00 456.00 228.77 775.42 469.00 22015. 7.55 160. 470.01 2914. .064 14 1.02 350. .035 .00 1937. .041 464.27 3182. 16603. 8.57 130. 41800. .18 .003176 9.09 Λ n 0 *SECNO 104.950 .02 56. 455.00 551.71 470.49 469.41 24268. 7.83 135. 465.00 4258. 10.07 135. 1.07 423. .035 .46 727. .00 458.00 104.950 41800. .18 .003648 14.41 13274. 8.57 1549. .041 2 456.00 286.83 .064 .00 838.54 135. ۵ *SECNO 106.100 3301 HV CHANGED MORE THAN HVINS .21 57. 455.00 427.43 456.00 456.00 292.64 720.07 466.12 1464. 8.74 115. .00 3037. .041 1.77 .44 739. 106.100 469.36 471.14 14.36 33791. 11.13 115. 6546. 8.50 115. 770. .064 15 41800. .18 . 00 ٥ *SECNO 107.900 .05 59. 456.00 387.71 456.00 458.00 139.58 527.29 14.10 14165. 11.37 160. 467.13 1068. 10.20 472.05 2383. .064 1.95 . 86 107.900 41800. 470.10 26567. 11.15 .00 1246. .04<u>1</u> 754. .00 .006829 15 180. 190. n *SECNO 109.400 109.400 14 41800. 12 460.00 460.00 125.77 511.65 14. 12579. 1.43 471.17 28213. 11.09 150. .00 1101. .041 473.11 2544. .064 1.94 99. .035 1.05 767. .00 468.34 1008. 457.00 10.16 007204 15 Û .00 385.88 150. 0 6/14/90 6:12:55

SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS BANKELE	•
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA LEFT/RIGHT	
TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN SSTA	
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	I CONT	CORAR	TOPWID ENDST	

*SECNO 110.650

12

PAGE

PAGE 11

	110.650 41800. .19 .004969	15.25 14628. 11.13 125.	472.25 24819. 9.64 125.	468.21 2353. 10.81 125.	.00 1315. .041 2	473.88 2574. .064 15	1.63 218. .035 0	.74 778. .000 .00	.03 61. 457.00 379.21	458.00 460.00 131.01 510.22			
	SECNO 112. 112.150 41800. .20 .006808	150 14.92 13742. 11.66 150.	472.92 26038. 10.80 150.	469.79 2020. 10.53 150.	.00 1178. .044 2	474.83 2411. .064 15	1.91 192. .035 0	.87 792. .000 .00	.08 63. 458.00 388.71	460.00 462.00 181.40 570.11			
	SECNO 113. 113.650 41800. .20 .005841	.650 15.09 12967. 11.03 150.	474.09 25936. 10.19 150.	470.43 2897. 10.57 150.	.00 1176. .044 2	475.79 2546. .064 15	1.71 274. .035 0	.94 805. .000 .00	.02 64. 459.00 386.58	460.00 462.00 138.43 525.01			
	SECNO 115. 115.150 41800. .21 .005529	.150 14.89 14506. 11.13 150.	474.89 24378. 10.11 150.	471.00 2915. 13.05 150.	.00 1304. .044 2	476.67 2411. .064 19	1.78 223. .035 0	.85 819. .000 .00	.02 65. 460.00 352.48	462.00 462.00 123.01 475.49			
0, •	SECNO 116 116.450 41800. .21 .005319	.450 15.45 23019. 11.65 130.	475.45 14816. 10.32 130.	471.95 3965. 12.55 130.	.00 1975. .044 2	477.43 1435. .064 15	1.98 316. .035 0	.70 830. .000 .00	.06 66. 460.00 343.78	461.00 462.00 131.84 475.62			
*	SECNO 117												
3		ANGED MORI	475.77	1NS 473.39	.00	478.31	2.54	.71	.17	462.00			
0	117.600 41800. .21 .007248	14.77 22110. 12.85 115.	14401. 11.72 115.	473.39 5290. 15.03 115.	1720. 044 2	1228. .064 15	352. .035 0	840 000 .00	67. 461.00 322.26	462.00 113.21 435.47			
ĩ	6/14/9	0 6	:12:55									PAGE	13
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR I WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA L ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST			
*	SECNO 118 118.500 41800. .21 .005858	.500 15.41 12434. 10.22 90.	476.41 17798. 10.60 90.	474.25 11567. 17.13 90.	.00 1217. .044 2	478.90 1680. .064 15	2.49 675. .035 0	.58 847. .000 .00	.01 68. 461.00 341.10	466.00 461.00 111.21 452.31			
1	6/14/9	0 6	:12:55									PAGE	14

ERROR CORR - 01,02,03 MODIFICATION -

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

MALIBU CREEK (e)

SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
*	.000	.00	.00	.00	289.00	52250.00	303.02	303.02	309.99	116.68	21.20	2465.07	4837 . 14
*	1.500	150.00	.00	.00	286.00	52250.00	309.37	302.41	311.03	15.99	11.40	5221.97	13065.7(
	3.000	150.00	.00	.00	286.00	52250.00	309.29	303.73	311.45	20.78	12.95	4649.05	11461.8
*	7.500	450.00	.00	.00	288.00	52250.00	308.07	308.07	314.52	74.87	21.91	2725.43	6038.3!
*	14.500	700.00	.00	.00	290.00	52250.00	315.15	309.59	317.53	22.21	13.25	4495.95	11086.8
*	20.500	600.00	.00	.00	294.00	52250.00	313.99	313.99	321.33	82.19	22.51	2500.45	5763.5 [,]
*	28.000	750.00	.00	.00	300.00	52250.00	320.37	320.37	328.06	78.51	23.59	2468.95	5896.9
*	35.000	700.00	.00	.00	308.00	52250.00	328.08	328.08	335.91	86.99	23.47	2438.53	5601.9
*	43.000	800.00	.00	.00	336.00	52250.00	353.43	353.43	360.42	84.35	22.02	2576.87	5689.1
*	48.500	550.00	.00	.00	344.00	52250.00	378.78	378.78	390.28	68.19	32.69	2174.11	6327.5 [.]

THIS RUN EXECUTED 6/14/90 6:13: 7

*	54.250	425.00	.00	.00	370.00	52250.00	393.74	393.74	402,23	78.87	24.05		5883.51
*	59.500	525.00	.00	.00	392.00	52250.00	413.73	413.73	421.68	78.23	23.42		5907.45
*	65.200	570.00	.00	.00	412.00	52250.00	435.32	435.32	444.33	82.61	25.12		5748.62
*	77.000	1180.00	.00	.00	434.00	52250.00	451.98	451.98	458.99	85.99	21.78	2558.34	
*	86.000	700.00	.00	.00	440.00	41800.00	461.12	456.27	461.90	15.45	8.00	6137.66	
*	91.000	500.00	.00	.00	442.00	41800.00	460.99	457.47	463.77	52.09	13.96	3239.40	
	93.500	250.00	.00	.00	444.00	41800.00	463.11	457.80	464.87	31.47	11.28	4049.31	7451.28
1	6/14/90	6:12:55										PAGE 1	5
	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
	96.100	260.00	.00	.00	445.00	41800.00	464.12	460.91	465.79	37.39	11.04	4232.88	6835.88
*	97.000	90.00	.00	.00	446.00	41800.00	463.35	463.05	466.88	100.45	15.84	2885.43	4170.66
	97.600	60.00	.00	.00	446.00	41800.00	463.90	463.71	467.50	98.82	16.16	2906.58	4204.93
	98.400	40.00	.00	.00	447.00	41800.00	464.13	461.64	468.07	140.62	15.92		
	98.780	38.00	.00	.00	447.00	41800.00	465.21	461.64	468.60	113.27	14.78		
*	99.330	55.00	.00	.00	448.00	41800.00	467.60	459.94	469.02	20.42	9.31		
	100.400	107.00	.00	.00	450.00	41800.00	468.28	462.97	469.27	22.31	7.39	5380.23	8850.01
	102.000	160.00	.00	.00	453.00	41800.00	468.67	463.15	469.58	24.71	7.02	5514.93	
	103.600	160.00	.00	.00	454.00	41800.00	469.00	464.27	470.01	31.76	7.55	5201.52	
	104.950	135.00	.00	.00	455.00	41800.00	469.41	465.00	470.49	36.48	7.83	5072.19	
	106.100	115.00	.00	.00	455.00	41800.00	469.36	466.12	471.14	39.74	8.50	3974.33	
	107.900	180.00	.00	.00	456.00	41800.00	470.10	467.13	472.05	68.29	11.15	3733.45	
	109.400	150.00	.00	.00	457.00	41800.00	471.17	468.34	473.11	72.04	11.09	3744.05	4924.87
	110.650	125.00	.00	.00	457.00	41800.00	472.25	468.21	473.88	49.69	9.64	4106.66	
	112.150	150.00	.00	.00	458.00	41800.00	472.92	469.79	474.83	68.08	10.80	3780.84	
	113.650	150.00	.00	.00	459.00	41800.00	474.09	470.43	475.79	58.41	10.19	3995.24	
	115.150	^{°'} 150.00	.00	.00	460.00	41800.00	474.89	471.00	476.67	55.29	10.11	3937.91	
	116.450	130.00	.00	.00	460.00	41800.00	475.45	471.95	477.43	53.19	10.32		5731.43
	117.600	115.00	.00	.00	461.00	41800.00	475.77	473.39	478.31	72.48	11.72		4909.84
	118.500	90.00	.00	.00	461.00	41800.00	476.41	474.25	478.90	58.58	10.60	3572.17	5461.52
(1)	6/14/90	6:12:55	i									PAGE 1	16

Ġ.

6:12:55 6/14/90

MALIBU CREEK (e) SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	.000	52250.00	303.02	.00	.00	9.02	176.75	.00
*	1.500	52250.00	309.37	.00	6.35	.00	328.77	150.00
	3.000	52250.00	309.29	.00	07	.00	297.88	150.00
*	7.500	52250.00	308.07	.00	-1.22	.00	223.39	450.00
*	14.500	52250.00	315.15	.00	7.07	.00	289.83	700.00
*	20.500	52250.00	313.99	.00	-1.16	.00	174.63	600.00
*	28.000	52250.00	320.37	.00	6.38	.00	164.69	750.00
*	35.000	52250.00	328.08	.00	7.71	.00	164.23	700.00
*	43.000	52250.00	353.43	.00	25.35	.00	191.61	800.00
*	48.500	52250.00	378.78	.00	25.35	.00	97.55	550.00
*	54.250	52250.00	393.74	.00	14.96	.00	148.08	425.00
*	59.500	52250.00	413.73	.00	19.99	.00	163.35	525.00
*	65.200	52250.00	435.32	.00	21.60	.00	130.65	570.00
*	77.000	52250.00	451.98	.00	16.66	.00	191.92	1180.00
*	86.000	41800.00	461.12	.00	9.14	.00	624.57	700.00

*	91.000	41800.00	460.99	.00	13	.00	265.79	500.00
	93.500	41800.00	463.11	.00	2.12	.00	545.61	250.00
	96.100	41800.00	464.12	.00	1.02	.00	453.62	260.00
*	97.000	41800.00	463.35	.00	77	.00	382.26	90.00
	97.600	41800.00	463.90	.00	.55	.00	394.52	60.00
	98.400	41800.00	464.13	.00	.23	.00	188.27	40.00
	98.780	41800.00	465.21	.00	1.08	.00	188.30	38.00
×	99.330	41800.00	467.60	.00	2.40	.00	305.00	55.00
	100.400	41800.00	468.28	.00	.68	.00	525.44	107.00

1 6/14/90 6:12:55

s	ECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
10	2.000	41800.00	468.67	.00	.39	.00	503.34	160.00
10	3.600	41800.00	469.00	.00	.33	.00	546.64	160.00
10	4.950	41800.00	469.41	.00	.42	.00	551.71	135.00
10	6.100	41800.00	469.36	.00	05	_00	427.43	115.00
10	7.900	41800.00	470.10	.00	.74	.00	387.71	180.00
10	9.400	41800.00	471.17	.00	1.06	.00	385.88	150.00
11	0.650	41800.00	472.25	.00	1.08	.00	379.21	125.00
11	2.150	41800.00	472.92	.00	.68	.00	388.71	150.00
11	3.650	41800.00	474.09	.00	1.16	.00	386.58	150.00
11	5.150	41800.00	474.89	.00	.80	.00	352.48	150.00
11	6.450	41800.00	475.45	.00	.56	.00	343.78	130.00
11	7.600	41800.00	475.77	.00	.32	.00	322.26	115.00
11	8,500	41800.00	476.41	.00	.64	.00	341.10	90.00

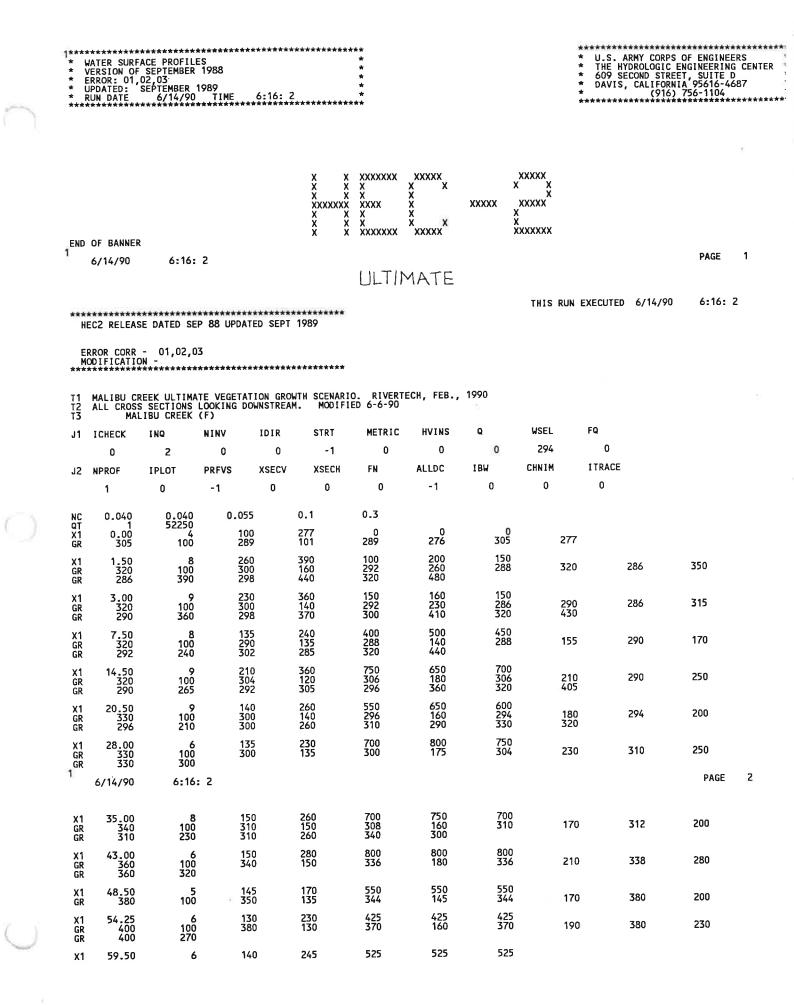
1 6/14/90

6:12:55

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION	SECNO=	.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
WARNING	SECNO=	1.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION CAUTION		7.500 7.500		1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING	SECNO=	14.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION CAUTION		20.500 20.500	PROFILE= PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION		28.000 28.000	PROFILE= PROFILE=		CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION		35.000 35.000	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION		43.000 43.000	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION	SECNO= SECNO=	48.500 48.500	PROFILE= PROFILE=		CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION		54.250 54.250	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION		59.500 59.500		1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION	SECNO= SECNO=	65.200 65.200	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
	SECNO= SECNO=	77.000 77.000	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING	SECNO=	86.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	91.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE

PAGE 17


PAGE 18

WARNING SECNO=97.000PROFILE=1CONVEYANCECHANGEOUTSIDEACCEPTABLERANGEWARNING SECNO=99.330PROFILE=1CONVEYANCECHANGEOUTSIDEACCEPTABLERANGE

RIVERTECH, INC.

APPENDIX 2

MALIBU CREEK HYDRAULIC ANALYSIS FOR ULTIMATE CHANNEL CONDITION

GR GR	420 420	100 290	400	140	392	160	392	205	400	245	
X1 GR GR	65.20 460 420	7 100 230	145 420 460	230 130 280	570 414	570 145	570 412	165	414	190	
X1 GR GR	77.00 470 470	6 100 370	145 440	285 145	1180 434	1180 220	1180 434	270	440	285	
NC	.040	040 41800	.080								
QT X1 GR GR GR	1 86.00 470 450 454	41800 12 100 470 840	310 460 460 470	470 250 490 880	900 450 460	600 310 520	700 440 452	360 570	440 452	425 760	
X1 GR GR	91_00 480 442	10 100 345	215 460 450	370 140 370	500 450 463	450 215 410	500 444 464	250 730	442 480	315 790	
X1 GR GR GR	93.50 480 444 470	12 100 330 745	270 470 444 480	435 130 395 790	290 460 450	160 145 435	250 458 463	210 470	448 463	270 685	
X1 GR GR GR	96.10 480 445 480	11 100 430 700	305 460 445	505 140 460	290 460 456	230 235 505	260 454 460	305 540	450 470	360 650	
1	6/14/90	6:16: 2								PAGE	3
X1 GR GR	97.00 480 454	13 100 355	325 466 450 470	490 135 435	110 462 446 480	85 190 465	90 460 446	280 485	456 450	325 490	
GR	454 460	355 530		600		465 720	60				
X1 GR GR GR	97.60 480 454 448	14 100 390 520	355 470 454 462	520 130 415 521	60 462 452 470	60 175 440 680	460 446 480	285 485 735	456 446	355 510	
NC X1 GR GR GR	_040 98.40 468 468	.040 18 100 155.1 238 275	.060 100 454 468	302 100.1 163.9 238.1 301.9	40 454 452 468	40 125 164	40 452 450 447	130 190	452 448 448	155 220 265	
GR GR	468 447 450	238 275	468 448	238.1 301.9	468 468	246.9 302		247	440	203	
X1	98.78	0			38	38	38				
NC X1 GR GR GR	_041 99.33 480 450 448 480	-042 16 100 480 645 900	.100 490 472 448 448	645 265 490 660	55 470 448 462	55 415 505 685	55 468 450 466	435 570 700	455 450 470	435.1 635 800	
NC X1 GR GR GR	0.041 100.40 480 454 450 480	0.042 16 100 500 695 850	0.100 535 470 450 460	680 200 535 710	70 466 450 464	120 255 570 735	107 462 452 470	350 595 755	460 450 472	480 680 810	
X1 GR GR GR	102.00 480 456 466	14 100 450 710	480 472 454 470	670 190 480 720	80 462 454 470	160 260 550 760	160 460 453 480	330 650 780	458 454	425 670	
X1 GR GR GR	103.60 480 458 456	15 100 455 685	475 472 456 460	685 210 475 705	130 464 456 468	130 260 520 720	160 462 454 468	290 645 775	460 454 480	395 665 780	
X1 GR GR GR	104.95 480 458 456 480	16 100 515 695 865	515 470 456 456	750 280 600 750	135 464 456 462	135 350 640 780	135 462 455 468	380 675 790	460 455 468	490 685 835	
GR 1	480 6/14/90	6:16: 2								PAGE	i,
	0, 14, 70										
X1 GR GR GR	106.10 480 458 456	13 100 485 695	640 472 456 472	695 190 550 725	115 470 456 480	115 280 640 726	115 466 455	360 670	460 455	455 685	
X1 GR GR	107.90 480 456	10 100 390	340 470 456	510 140 495	160 466 458	190 195 510	180 460 472	320 530	456 480	340 531	
X1 GR	109.40 480	14 100	295 468	485 135	150 466	150 180	150 462	270	460	295	

GR GR	458 460		500 •85	457 470	315 500	457 472		340 520	458 480	400 521	458	470
X1 GR GR GR	110.65 480 457 470	3	12 100 515 510	300 470 457 480	480 140 340 511	125 466 458		125 195 365	125 460 458	275 445	458 460	300 480
NC X1 GR GR GR	0.044 112.15 480 458 478	-	042 12 100 380 560	0.100 355 470 458 480	535 215 415 661	150 468 460		150 250 470	150 462 462	315 535	460 476	355 580
X1 GR GR GR	113.65 480 459 480	-	11 100 335 526	295 470 459	480 165 359	150 468 460		150 200 370	150 462 462	275 480	460 474	295 525
X1 GR GR	115.15 480 460		10 100 300	280 470 460	450 145 350	150 468 462		150 180 450	150 466 470	195 475	462 480	280 476
X1 GR GR	116.45 480 460		10 100 405	350 470 460	445 170 440	130 468 462		130 195 445	130 464 468	280 475	461 480	350 476
X1 GR GR	117.60 480 461		10 100 340	310 472 461	395 125 370	115 468 462		115 160 395	115 466 472	250 435	462 480	310 436
X1 GR GR GR	118.50 480 462 480		11 100 295 460	275 472 461	390 125 360	90 468 461		90 175 390	90 468 462	250 415	466 466	275 430
1	6/14/90	6	:16: 2			5						PAGE
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR IWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST		
0 CC *S 37	HV= .00 20 CRITIC 52250. .00 .022060 ECNO 1.50	100 CEHV 00 :AL DEPTH 14.02 0. 00 0.	= .30 ASSUMED 303.02 52250. 21.20 0.	303.02 0. .00 0.	294.00 0. 000 0	309.99 2465. .055 16	6.98 0. .000 0	.00 0. .000 .00	.00 0. 289.00 176.75	305.00 305.00 100.12 276.88		
			E THAN H	HANGE OUTS	IDE OF AC	CEPTABLE F	RANGE, K	RATIO = 1	3.23			
	1.500 52250. .00 .002114	23.79 14192. 9.32 100.	309.79 27255. 9.66 150.	302.19 10803. 10.64 200.	.00 1522. .040 3	311.27 2822. .055 8	1.49 1016. .040 0	.73 13. .000 .00	.55 1. 286.00 330.78	292.00 286.00 130.64 461.43		
0 *s	ECNO 3.00 3.000 52250. .01 .002775	23.91 14661. 10.86 150.	309.91 31495. 11.09 150.	303.33 6094. 9.45 160.	.00 1351. .040 3	311.74 2839. .055 19	1.83 645. .040 0	.37 31. .000 .00	.10 2. 286.00 299.74	292.00 290.00 120.17 419.91		
*s	ECNO 7.5		RE THAN H	VINS								
33	02 WARNI	NG: CON	/EYANCE C	HANGE OUTS	IDE OF AC	CEPTABLE I	RANGE, K	RATIO =	.61			
0	7.500 52250. .02 .007575	22.20 2994. 12.58 400.	310.20 36303. 17.28 450.	307.75 12952. 14.65 500.	.00 238. .040 3	314.39 2101. .055 15	4.19 884. .040 0	1.94 73. .000 .00	.71. 5. 288.00 244.21	290.00 292.00 111.43 355.64		
1	6/14/9	0 (6:16: 2									PAGE
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR I WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA I ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST		

*SECNO 14.500

3301 HV CHANGED MORE THAN HVINS

77			YANCE CHA				ANGE KR	ATIO = 1	. 55	÷
	14.500	25.91	315.91 38861.	309.58 3300. 8.88 650.	.00 10/1	317.87	1.95 372.	3.25 136.	.22	306.00 296.00
	52250. .03 .003149	10090. 9.69 750.	11.75 700.	8.88 650.	.040 3	3307. .055 15	.040 0	.000	290.00 292.23	105.11 397.34
0 *s	ECNO 20.5	00								
33	01 HV CHA	NGED MORE	THAN HVI	NS						
33	02 WARNIN	G: CONVE	YANCE CHA	NGE OUTSI	DE OF ACC	EPTABLE R	ANGE, KR	ATIO =	.62	
	20.500 52250.	22.78 2251.	316.78 43816.	313.79 6184.	.00 188.	321.60	4.82 388.	2.88 189.	.86 12.	300.00 300.00
	.04	11.98 550.	18.07	15.93	_040 _3	2424. .055 15	.040	.000	294.00 182.56	117.62 300.18
0 *s	ECNO 28.0	00		740.00		707 00	F 20	6.25	1/	300.00
	28.000 52250	22.71 4303.	322.71 39188.	8759.	301.	327.99 2048. .055	5.28 516. .040	240.	.14 15. 300.00	304.00 108.50
0	.05 .008377	14.30 700.	19.14 750.	16.96 800.	.040 3	.055	0	.00	173.29	281.79
	SECNO 35.0	000								
33	SO1 HV CHA		THAN HVI					- 47	75	710.00
	35.000 52250.	21.02 5057.	329.02 43330	327.90 3863.		335.48 2052.	6.46 241.	7.13 284. .000	.35 18. 308.00	310.00 310.00 118.30
	.06 012419	16.77 700.	21.11 700.	16.02 750.	.040 2	055 11	.040	.00	167.06	285.36
0 1	6/14/90) 6:	:16: 2							
	SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	нν	нL	OLOSS	BANK ELEV
	Q TIME	QLOB VLOB	QCH VCH	QROB VROB	ALOB XNL	ACH XNCH IDC			ELMIN	EFT/RIGHT SSTA
	SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST
*:	SECNO 43.0 185 MINIMU	000 M SPECIE								
	720 CRITIC 43.000			353.21	.00	360.00	6.78	11.08	.10	340.00
	52250. .07	3387. 15.52	45411 21.54	3451. 16.40	218. .040	2108. _055	210. .040	331.	.10 21. 336.00 190.70	338.00 116.96 307.66
0_	.015537	800.	800.	800.	0	15	0	.00	190.70	507.00
	SECNO 48.5		E THAN HV	INS						
-	185 MINIM									
3	720 CRITI 48.500	CAL DEPTH 33.28	ASSUMED	377.28	_ <u>.0</u> 0	388.31	11.03	7.25	1.27	344.00
	52250. .08	18657. 25.31	24757. 29.75	8836. 19.14	737. .040	832. .055	462. .040	360.	23. 344.00	344.00 103.17 197.74
0	.011323	550.	550.	550.	0	17	0	.00	94.57	17/ - /4
	SECNO 54.3		E THAN HV	INS						
	185 MINIM									
3	720 CRITI 54.250	CAL DEPTH 23.64	ASSUMED 393.64	393.64	.00	401.79	8.16	5.41	.29 24.	380.00 380.00
	52250. .09	1981. 14.20	47498.	2771. 14.90	139. .040 0	2014. .055 19	186. .040 0	382. .000 .00	370.00 147.73	109.55
0_	.014444	425.	425.	425.	U	19	U	.00	147.75	201.21
	SECNO 59.		E THAN HV	INS						
7	'185 MINIM	UM SPECIF	IC ENERGY							
3	720 CRITI 59.500	CAL DEPTH 21,59	ASSUMED 413.59	413.59	.00	421.20	7.62	7.54 410.	.05 26.	400.00
	52250. .09	2729. 14.79	46406. 22.90 525.	3115. 15.00 525.	185. .040 0	2027. .055 11	208. .040 0	.000	392.00 162.74	112.83
0	.014284	525.	525.	363.	0	.,	5	.00	102114	
6	6/14/9	0 6	:16: 2							
	SECNO	DEPTH	CWSEL QCH	CR1WS QROB	WSELK ALOB	EG ACH	HV AROB	HL VOL	OLOSS TWA L	BANK ELEV EFT/RIGHT
	Q TIME SLOPE	QLOB VLOB XLOBL	VCH VCH XLCH	VROB XLOBR	XNL ITRIAL	XNCH	XNR	WTN CORAR	ELMIN TOPWID	SSTA ENDST
	SLOPE	ALUOL	ALON	ALOOK						

PAGE 7

PAGE 8

*SE	CNO 65.20	0								
330	1 HV CHAN	GED MORE	THAN HVI	NS						
372	5 MINIMUM 0 CRITICA 65.200 52250. .10 .014148	SPECIFI L DEPTH 23.21 9004. 25.02 570.	C ENERGY ASSUMED 435.21 41152. 23.82 570.	435.21 2094. 14.49 570.	.00 360. .040 0	443.95 1728. .055 8	8.75 145. .040 0	8.10 441. .000 .00	.34 28. 412.00 130.41	414.00 420.00 118.59 249.01
0 *SE	CNO 77.00	0								
330	1 HV CHAN	IGED MORE	THAN HVI	NS						
0	77.000 52250. .12 .010939	19.58 1705. 12.33 1180.	453.58 47043. 19.03 1180.	451.89 3502. 13.40 1180.	.00 138. .040 2	458.91 2471. .055 15	5.33 261. .040 0	14.62 510. .000 .00	.34 33. 434.00 198.86	440.00 440.00 124.63 323.48
	ECNO 86.00									
330	DI HV CHAN	IGED MORE	THAN HVI	NS						
330	D2 WARNING	: CONVE	YANCE CHA	NGE OUTSI	DE OF ACC	EPTABLE R	ANGE, KR	ATIO = 1	-85	
0	86.000 41800. .15 .002055	21.70 2415. 5.70 900.	461.70 17644. 5.89 700.	455.76 21741. 7.05 600.	.00 423. .040 3	462.36 2997. .080 14	.66 3082. .040 0	2.97 583. .000 .00	.47 39. 440.00 634.70	450.00 450.00 224.54 859.24
			THAN HVI	NS						
33(DZ WARNING	G: CONVE	YANCE CHA	NGE OUTS	DE OF ACC	EPTABLE F	ANGE, KR	ATIO =	.51	
0	91.000 41800. .16 .007883	20.47 7043. 12.43 500.	462.47 32172. 11.36 500.	457.37 2585. 10.81 450.	.00 566. .040 2	464.52 2833. .080 19	2.06 239. .040 0	1.75 639. .000 .00	.42. 44. 442.00 273.31	450.00 450.00 135.06 408.37
1	6/14/90	6:	16: 2							
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LE ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST
	ECNO 93.5									
55	UT HV CHA	NGED MORE	E THAN HV	INS .						
33	02 WARNIN	G: CONVE	YANCE CH	ANGE OUTS	IDE OF AC	CEPTABLE	RANGE, KR	RATIO = 1	1.42	
0	93.500 41800. .17 .003882	20.79 11279. 10.24 290.	464.79 26542. 8.32 250.	457.44 3979. 5.78 160.	1101. .040 .3	465.96 3190. .080 14	1.17 689. .040 0	1.35 663. .000 .00	.09 46. 444.00 562.54	448.00 450.00 137.81 700.35
*S	ECNO 96.1 96.100 41800. .17 .004221	00 20.99 11258. 9.12 290.	465.99 26866. 7.92 260.	460.84 3677. 7.70 230.	.00 1235. .040 2	467.05 3391. .080 19	1.05 477. .040 0	1.07 694. .000 .00	.01 49. 445.00 477.92	454.00 456.00 128.01 605.93
0 *s	ECNO 97.0	00								
33	01 HV CHA	NGED MOR	E THAN HV	INS						
0	97.000 41800. .18 .007742	19.98 9527. 10.38 110.	465.98 24469. 9.88 90.	463.08 7803. 13.81 85.	.00 917. .040 2	467_80 2478. .080 15	1.82 565. .040 0	.53 704. .000 .00	.23 50. 446.00 436.72	456.00 450.00 135.19 571.90
-	ECNO 97.6 97.600 41800. .18 .007773	00 20.53 14724. 11.65 60.	466.53 25889. 10.14 60.	463.36 1187. 5.50 60.	.00 1264. .040 2	468.28 2553. .080 15	1.74 216. .040 0	.47 709. .000 .00	01. 51. 446.00 461.62	456.00 448.00 149.49 611.12
0 *s	ECNO 98.4	00								
32	65 DIVIDE	D FLOW								
1	6/14/90	6	:16: 2							
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR I WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA L ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST

.

PAGE 9

PAGE 10

330	D1 HV CHA	NGED MORE	THAN HVI	NS						
0	98.400 41800. .18 .015101 ECNO 98.7	18.91 0. .00 40.	465.91 41800. 14.44 40.	461.82 0. .00 40.	.00 0. .000 3	469.15 2895. .060 19	3.24 0. .000 0	.42 712. .000 .00	.45 51. 447.00 184.33	468.00 468.00 100.01 301.99
	65 DIVIDE									
	98.780 41800. .18 .012832	19.82 0. .00 38.	466.82 41800. 13.65 38.	461.82 0. .00 38.	.00 0. .000 2	469.71 3063. .060 15	2.89 0. .000 0	.53 715. .000 .00	.03 51. 447.00 184.36	468.00 468.00 100.01 301.99
0 *si	ECNO 99.3	30								
33	01 HV CHA	NGED MORE	THAN HVI	NS						
33	02 WARNIN	G: CONVE	YANCE CHA	NGE OUTSI		EPTABLE R	ANGE, KR	ATIO = 1		
0	99.330 41800. .18 .003981	20.56 12035. 13.10 55.	468.56 20047. 6.72 55.	461.18 9718. 12.19 55.	.00 919. .041 3	470.20 2981. 100 14	1.64 797. .042 0	.36 720. .000 .00	.13 52. 448.00 334.45	448.00 448.00 429.44 763.89
*S	ECNO 100.									
			THAN HVI		.00	470.55	.84	.28	.08	450.00
0	100.400 41800. .19 .002251	19.71 21006. 7.94 70.	469.71 13771. 5.01 107.	463.55 7023. 9.20 120.	2645. .041 2	2749. .100 21	764. .042 0	732. .000 .00	53. 450.00 550.12	450.00 203.92 754.05
1	6/14/90) 6:	16: 2							
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LE ELMIN TOPWID	BANK ELEV FT/RIGHT SSTA ENDST
	ECNO 102. 102.000 41800. .19 .002556	.000 16.96 23628. 8.88 80.	469.96 14916. 4.82 160.	463.33 3257. 7.79 160.	.00 2662. .041 2	470.85 3092. 100 11	.89 418. .042 0	.28 750. .000 .00	.02 54. 453.00 515.60	454.00 454.00 204.30 719.89
	ECNO 103. 103.600 41800. .19 .003282	600 16.31 21454. 9.46 130.	470.31 16662. 5.22 160.	464.35 3684. 7.85 130.	.00 2267. .041 2	471.28 3191. .100 14	.97 469. .042 0	_41 770. _000 _00	.02 56. 454.00 555.43	456.00 456.00 220.54 775.96
*s 0	ECNO 104 104.950 41800. .20 .003864	.950 15.78 18040. 9.62 135.	470.78 18845. 5.51 135.	465.04 4915. 9.00 135.	.00 1875. .041 2	471.77 3422. .100 14	.98 546. .042 0	.48 788. .000 .00	.00 58. 455.00 576.09	458.00 456.00 265.87 841.96
*s 0	SECNO 106 106.100 41800. .20 .002903	15.85 36184. 10.10 115.	470.85 4235. 4.97 115.	466.52 1381. 6.68 115.	.00 3583. .041 2	472.28 852. .100 19	1.43 207. .042 0	.38 802. .000 .00	.14 59. 455.00 481.23	456.00 456.00 241.62 722.85
	SECNO 107		EVANCE CH	ANGE OUTS			RANGE, KI	RATIO =	.61	
52	107.900	15.33	471.33	467.16	.00	473.15	1 82	.75	.12	456.00
	41800. .21 .007781	19706. 13.19 160.	20866. 8.05 180.	1228. 9.68 190.	1494. _041 _2	2591. .100 .15	127. .042 0	819. .000 .00	61. 456.00 394.35	458.00 134.69 529.04
0 *s	SECNO 109 109.400 41800. .21 .008033	.400 15.56 17959. 13.41 150.	472.56 22485. 8.01 150.	468.26 1357. 9.39 150.	.00 1339. .041 .3	474.34 2808. .100 19	1.78 145. .042 0	1.19 834. .000 .00	.00 62. 457.00 398.36	460.00 460.00 121.71 520.07
0 1	6/14/9	0 6	:16: 2							
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA L ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST

PAGE 11

PAGE 12

*SECNO 110.650

ł,

11 4 _0	0.650 1800. .21 05609	16.54 19551. 12.72 125.	473.54 19507. 6.95 125.	468.81 2742. 10.67 125.	.00 1537. .041 0	475.18 2808. .100 15	1.64 257. .042 0	.83 847. .000 .00	.01 63. 457.00 384.54	458.00 460.00 125.82 510.35	
*SEC 11 4	NO 112. 2.150 1800. .22 07205	150 16.45 18816. 12.91 150.	474.45 20528. 7.64 150.	470.30 2456. 9.86 150.	.00 1457. .044 2	476.15 2686. .100 15	1.70 249. .042 0	.95 862. .000 .00	.02 65. 458.00 411.21	460.00 462.00 163.81 575.02	
*SEC 11 4	NO 113. 3.650 1800. .22 06290	650 16.61 17651. 12.42 150.	475.61 20515. 7.26 150.	470.76 3633. 10.60 150.	.00 1421. .044 2	477.17 2827. .100 19	1.56 343. .042 0	1.01 877. .000 .00	.01 66. 459.00 396.73	460.00 462.00 128.54 525.27	
*SEC 11 4	NO 115. 5.150 1800. 23	450		471.28 3276. 12.45 150.			1.68 263.	_91 893_ _000 _00	.03 67. 460.00 359.63	462.00 462.00 116.01 475.64	
-11 4 .0		450 17.07 27504		472.41 3813. 10.43 130.					.02 68. 460.00 355.28	120.48	
11 4 .0	NO 117. 7.600 1800. .23 06080	16.38	477.38	473.72 5344. 12.82 115.					.13 69. 461.00 327.48	462.00 108.19	
U 1	6/14/90										
C T	ECNO I IME SLOPE	DEPTH QLOB VLOB XLOBL	OCH	CRIWS QROB VROB XLOBR	ALOB	ACH	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST	
11 4	1800	.500 17.10 16831. 11.23 90.	478.10 13349. 7.12 90.	474.52 11620. 14.83 90.	.00 1499. .044 2	480.09 1874. .100 15	1.99 784. .042 0	.52 925. .000 .00	.02 70. 461.00 350.00	466.00 461.00 105.93 455.93	
ĭ) 6:									

ERROR CORR - 01,02,03 MODIFICATION -

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

MALIBU CREEK (F) SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
*	.000	.00	.00	.00	289.00	52250.00	303.02	303.02	309.99	220.60	21,20	2465.07	3517.92
*	1.500	150.00	.00	.00	286.00	52250.00	309.79	302.19	311.27	21.14	9.66	5359.83	11364.69
	3.000	150.00	.00	.00	286.00	52250.00	309.91	303.33	311.74	27.75	11.09	4834.21	9917.97
*	7.500	450.00	.00	.00	288.00	52250.00	310.20	307.75	314.39	75.75	17.28	3223.40	6003.20
*	14.500	700.00	.00	.00	290.00	52250.00	315.91	309.58	317.87	31.49	11.75	4719.38	9310.74
*	20.500	600.00	.00	.00	294.00	52250.00	316.78	313.79	321.60	82.06	18.07	3000.50	5767.77
	28.000	750.00	.00	.00	300.00	52250.00	322.71	319.99	327.99	83.77	19.14	2865.16	5708.79
	35.000	700.00	.00	.00	308.00	52250.00	329.02	327.90	335.48	124.19	21.11	2594.85	4688.58
*	43.000	800.00	.00	.00	336.00	52250.00	353.21	353.21	360.00	155.37	21.54	2536.54	4191.79
*	48.500	550.00	.00	.00	344.00	52250.00	377.28	377.28	388.31	113.23	29.75	2030.83	4910.33
*	54.250	425.00	.00	.00	370.00	52250.00	393.64	393.64	401.79	144-44	23.59	2338.98	4347.56
*	59.500	525.00	.00	.00	392.00	52250.00	413.59	413.59	421.20	142.84	22.90	2418.82	4371.75

334

PAGE 13

PAGE 14

6:16:15

THIS RUN EXECUTED 6/14/90

*	65.200	570.00	.00	.00	412.00	52250.00	435.21	435.21	443.95	141.48	23.82	2231.97	4392.72
	77.000	1180.00	.00	.00	434.00	52250.00	453.58	451.89	458.91	109.39	19.03	2871.15	4995.68
*	86.000	700.00	.00	.00	440.00	41800.00	461.70	455.76	462.36	20.55	5.89	6501.96	9220.62
*	91.000	500.00	.00	.00	442.00	41800.00	462.47	457.37	464.52	78.83	11.36	3638.53	4708.05
*	93.500	250.00	.00	.00	444.00	41800.00	464.79	457.44	465.96	38.82	8.32	4980.46	6708.59
1	6/14/90	6:16: 2	2									PAGE 1	5
	SECNO	XLCH	ELTRD	ELLC	ELMIN	٩	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
	96.100	260.00	.00	.00	445.00	41800.00	465.99	460.84	467.05	42.21	7.92	5103.38	6433.84
	97.000	90.00	.00	.00	446.00	41800.00	465.98	463.08	467.80	77.42	9.88	3960.05	4750.72
	97.600	60.00	.00	.00	446.00	41800.00	466.53	463.36	468.28	77.73	10.14	4033.01	4741.27
	98.400	40.00	.00	.00	447.00	41800.00	465.91	461.82	469.15	151.01	14.44	2894.65	3401.51
	98.780	38.00	.00	.00	447.00	41800.00	466.82	461.82	469.71	128.32	13.65	3063.24	3690.03
*	99.330	55.00	.00	.00	448.00	41800.00	468.56	461.18	470.20	39.81	6,72	4697.03	6624.67
	100.400	107.00	.00	.00	450.00	41800.00	469.71	463.55	470.55	22.51	5.01	6157.28	8810.81
	102.000	160.00	.00	.00	453.00	41800.00	469.96	463.33	470.85	25.56	4.82	6172.06	8268.47
	103.600	160.00	.00	.00	454.00	41800.00	470.31	464.35	471.28	32.82	5.22	5927.59	7296.13
	104.950	135.00	.00	.00	455.00	41800.00	470.78	465.04	471.77	38.64	5.51	5843.31	6724.69
	106.100	115.00	.00	.00	455.00	41800.00	470.85	466.52	472.28	29.03	4.97	4642.16	7757.69
*	107.900	180.00	.00	.00	456.00	41800.00	471.33	467.16	473.15	77.81	8.05	4211.98	4738.77
	109.400	150.00	.00	.00	457.00	41800.00	472.56	468.26	474.34	80.33	8.01	4292.19	4663.73
	110.650	125.00	.00	.00	457.00	41800.00	473.54	468.81	475.18	56.09	6.95	4602.75	5581.38
	112.150	150.00	.00	.00	458.00	41800.00	474.45	470.30	476.15	72.05	7.64	4392.53	4924.59
	113.650	150.00	.00	.00	459.00	41800.00	475.61	470.76	477.17	62.90	7.26	4591.28	5270.49
	115.150	150.00	.00	.00	460.00	41800.00	476.44	471.28	478.12	58.73	7.15	4491.17	5454.24
	116.450	130.00	.00	.00	460.00	41800.00	477.07	472.41	478.81	46.26	6.59	4293.96	6145.55
	117.600	115.00	.00	.00	461.00	41800.00	477.38	473.72	479.55	60.80	7.37	3822.30	5360.84
	118.500	90.00	.00	.00	461.00	41800.00	478.10	474.52	480.09	55.84	7.12	4156.35	5593.65
1	6/14/90	6:16:	2									PAGE 1	6

6:16: 2 6/14/90

MALIBU CREEK (F) SUMMARY PRINTOUT TABLE 150

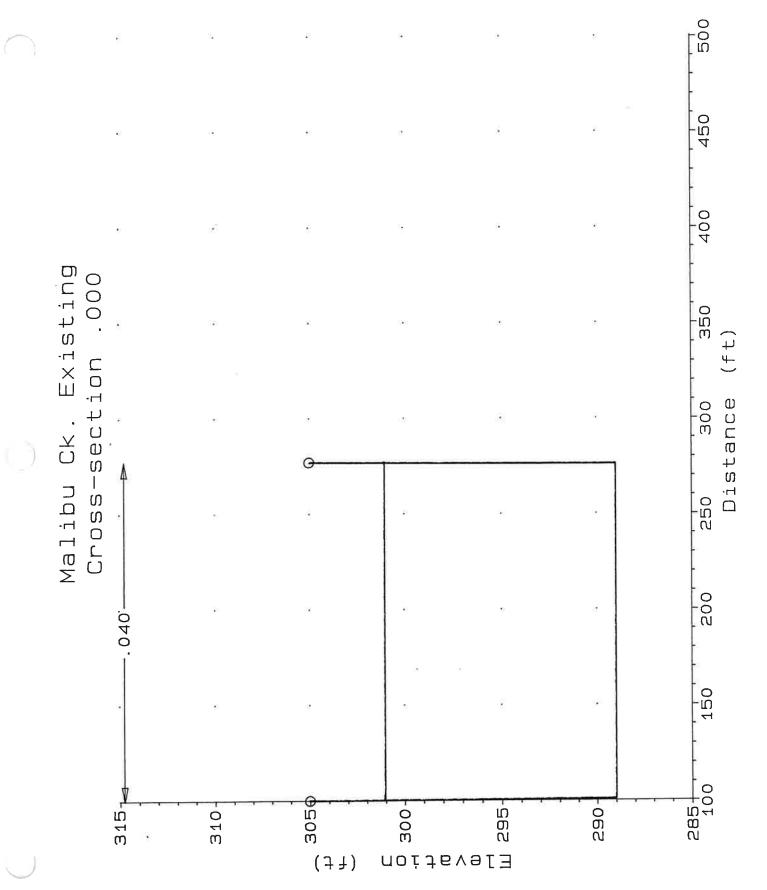
	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	.000	52250.00	303.02	.00	.00	9.02	176.75	.00
*	1.500	52250.00	309.79	.00	6.77	.00	330.78	150.00
	3.000	52250.00	309.91	.00	. 13	.00	299.74	150.00
*	7.500	52250.00	310.20	.00	.29	.00	244.21	450.00
*	14.500	52250.00	315.91	.00	5.71	.00	292.23	700.00
*	20.500	52250.00	316.78	.00	.87	.00	182.56	600.00
	28.000	52250.00	322.71	.00	5.93	.00	173.29	750.00
	35.000	52250.00	329.02	.00	6.30	.00	167.06	700.00
*	43.000	52250.00	353.21	.00	24.20	.00	190.70	800.00
*	48.500	52250.00	377.28	.00	24.07	.00	94.57	550.00
*	54.250	52250.00	393.64	.00	16.35	.00	147.73	425.00
*	59.500	52250.00	413.59	.00	19.95	.00	162.74	525.00
*	65.200	52250.00	435.21	.00	21.62	.00	130.41	570.00
	77.000	52250.00	453.58	.00	18.38	.00	198.86	1180.00
*	86.000	41800.00	461.70	.00	8.11	.00	634.70	700.00
*	91.000	41800.00	462.47	.00	.77	.00	273.31	500.00

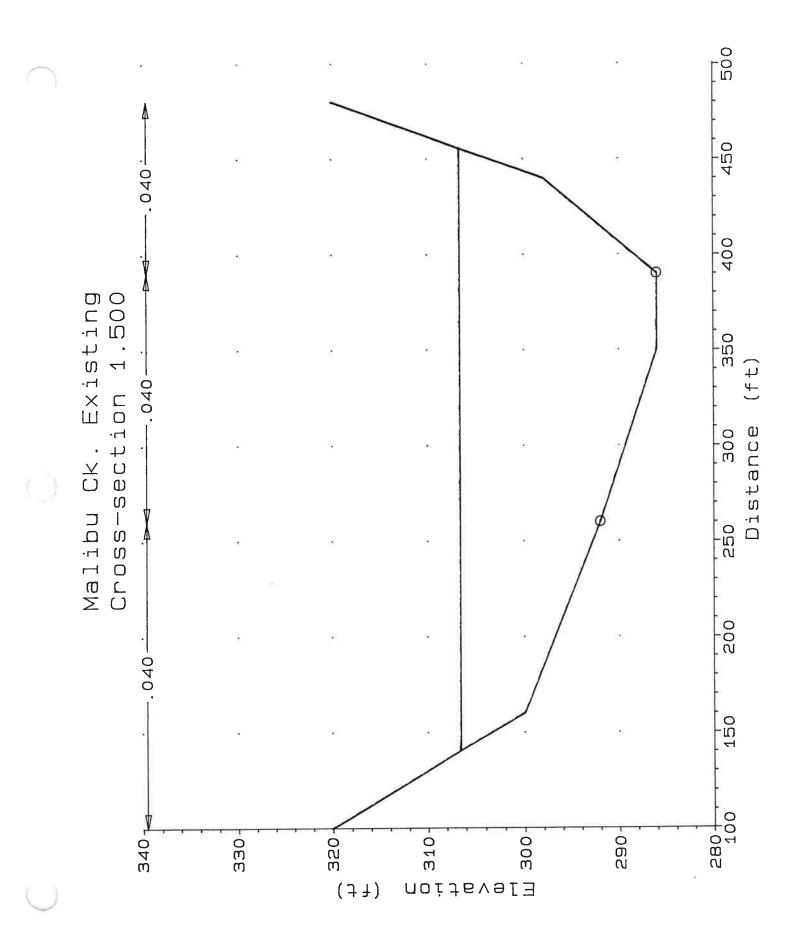
*	93.500	41800.00	464.79	.00	2.32	.00	562.54	250.00	
	96.100	41800.00	465.99	.00	1.20	.00	477.92	260.00	
	97.000	41800.00	465.98	.00	01	.00	436.72	90.00	
	97.600	41800.00	466.53	.00	.55	.00	461.62	60.00	
	98.400	41800.00	465.91	.00	62	.00	184.33	40.00	
	98.780	41800.00	466.82	.00	.91	.00	184.36	38.00	
*	99,330	41800.00	468.56	.00	1.74	.00	334.45	55.00	
	100.400	41800.00	469.71	.00	1.16	.00	550.12	107.00	
1	6/14/90	6:16:	2			3			
	05010		011051		DIEUCY	DIFKWS	TOPWID	XLCH	
	SECNO	Q	CWSEL	DIFWSP	DIFWSX				
	102.000	41800.00	469.96	.00	.24	.00	515.60	160.00	
	103.600	41800.00	470.31	.00	.36	.00	555.43	160.00	
	104.950	41800.00	470.78	.00	.47	.00	576.09	135.00	
	106.100	41800.00	470.85	.00	.07	.00	481.23	115.00	
*	107.900	41800.00	471.33	.00	-48	.00	394.35	180.00	
	109.400	41800.00	472.56	.00	1.23	.00	398.36	150.00	
	110.650	41800.00	473.54	.00	.99	.00	384.54	125.00	
	112.150	41800.00	474.45	.00	.91	.00	411.21	150.00	
	113.650	41800.00	475.61	.00	1.16	.00	396.73	150.00	
	115.150	41800.00	476.44	.00	.83	.00	359.63	150.00	
	116.450	41800.00	477.07	.00	.63	.00	355.28	130.00	
	117.600	41800.00	477.38	.00	.30	.00	327.48	115.00	
	118.500	41800.00	478.10	.00	.72	.00	350.00	90.00	

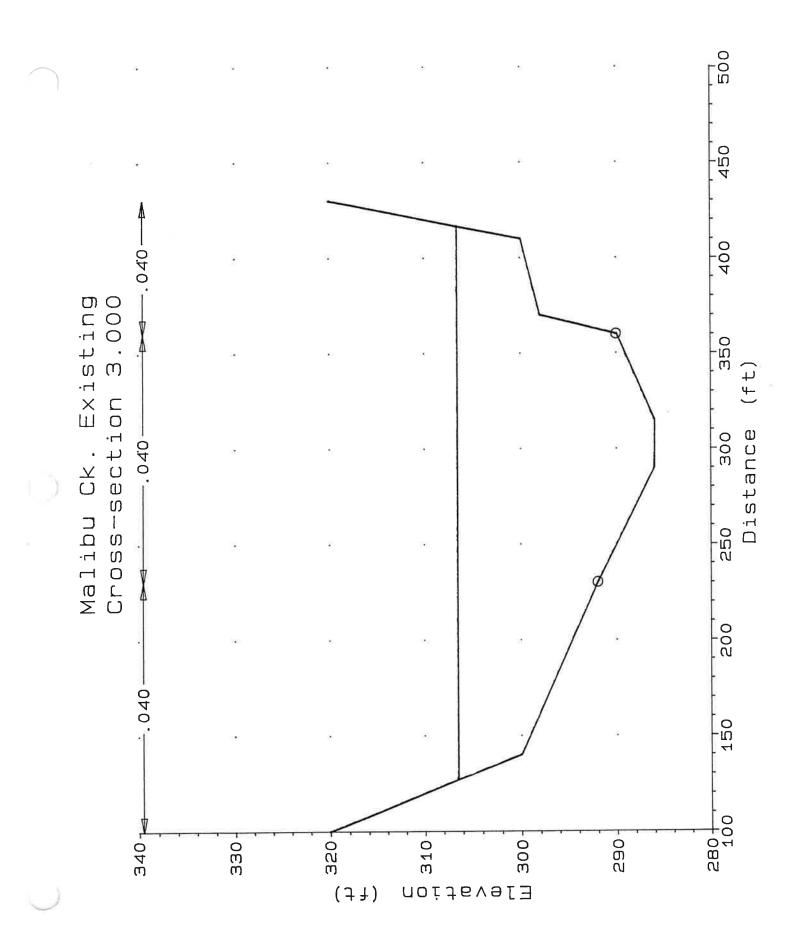
6/14/90 6:16: 2

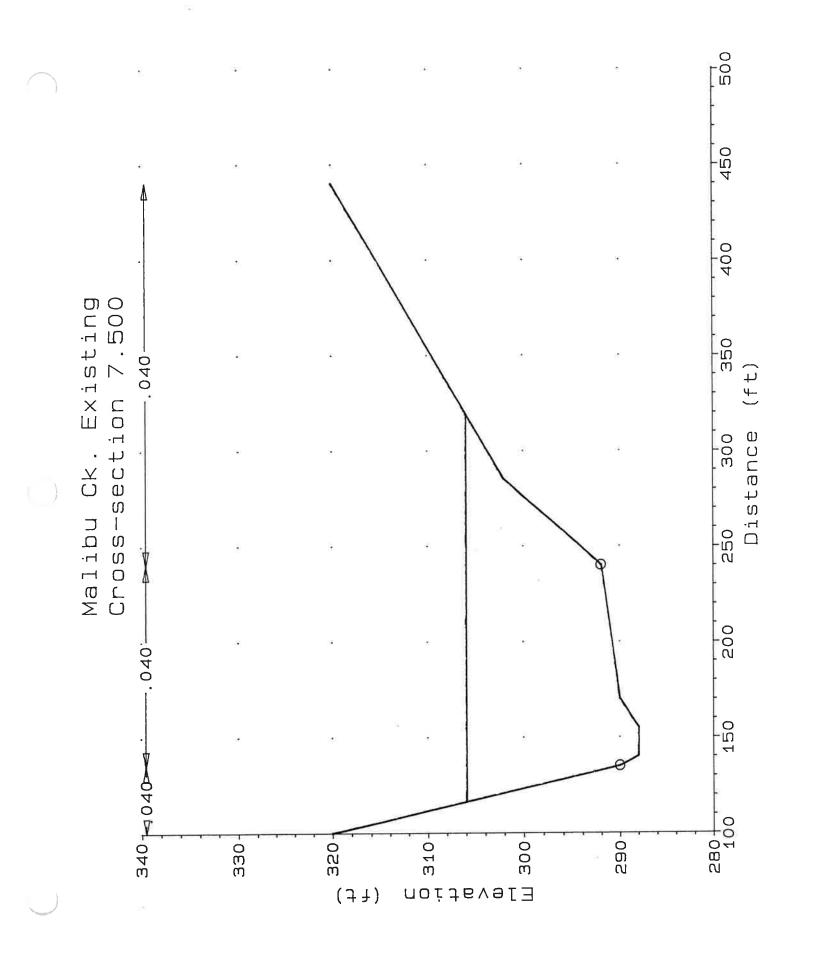
SUMMARY OF ERRORS AND SPECIAL NOTES

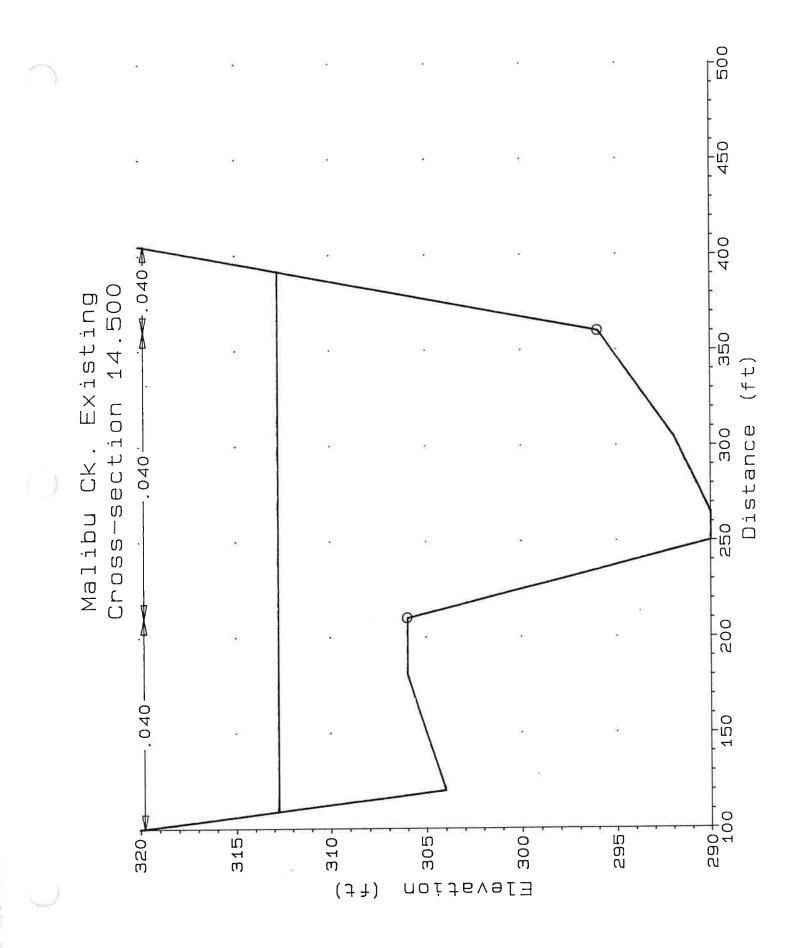
CAUTION SECNO=	.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
WARNING SECNO=	1.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	7.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	14.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	20.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION SECNO= CAUTION SECNO=	43.000 43.000	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION SECNO= CAUTION SECNO=	48.500 48.500		1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION SECNO= CAUTION SECNO=	54.250 54.250	PROFILE= PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION SECNO= CAUTION SECNO=	59.500 59.500	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION SECNO= CAUTION SECNO=	65.200 65.200	PROFILE= PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING SECNO=	86.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	91.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	93.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	99.330	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	107.900	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
	2 · · · · · · · · · · · · · · · · · · ·			

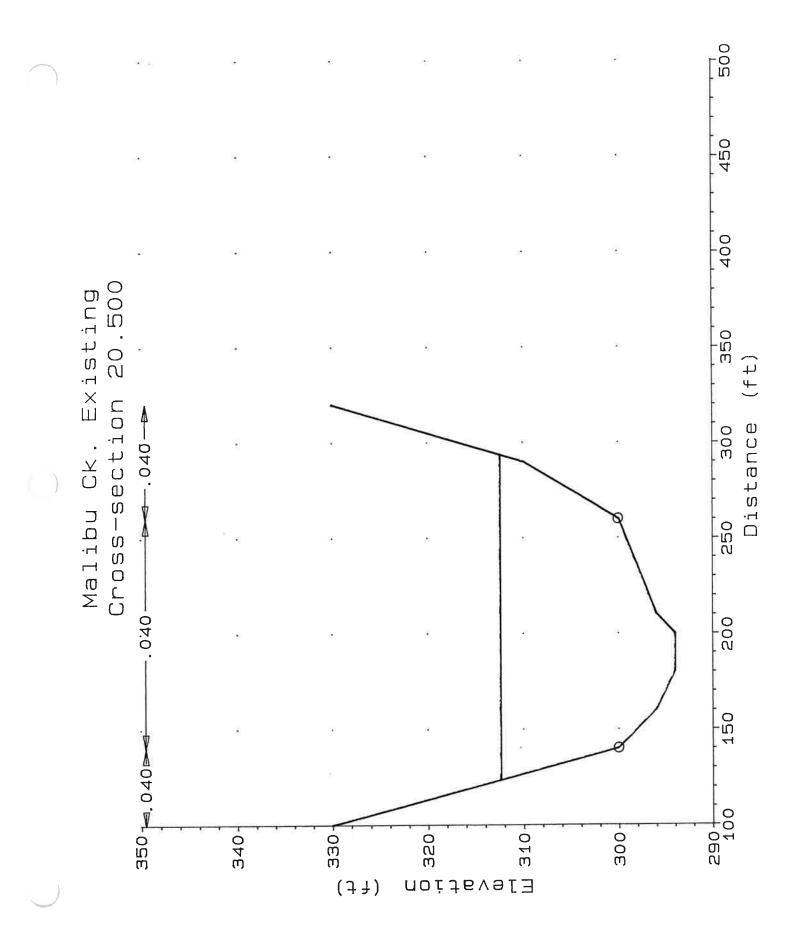

PAGE 17

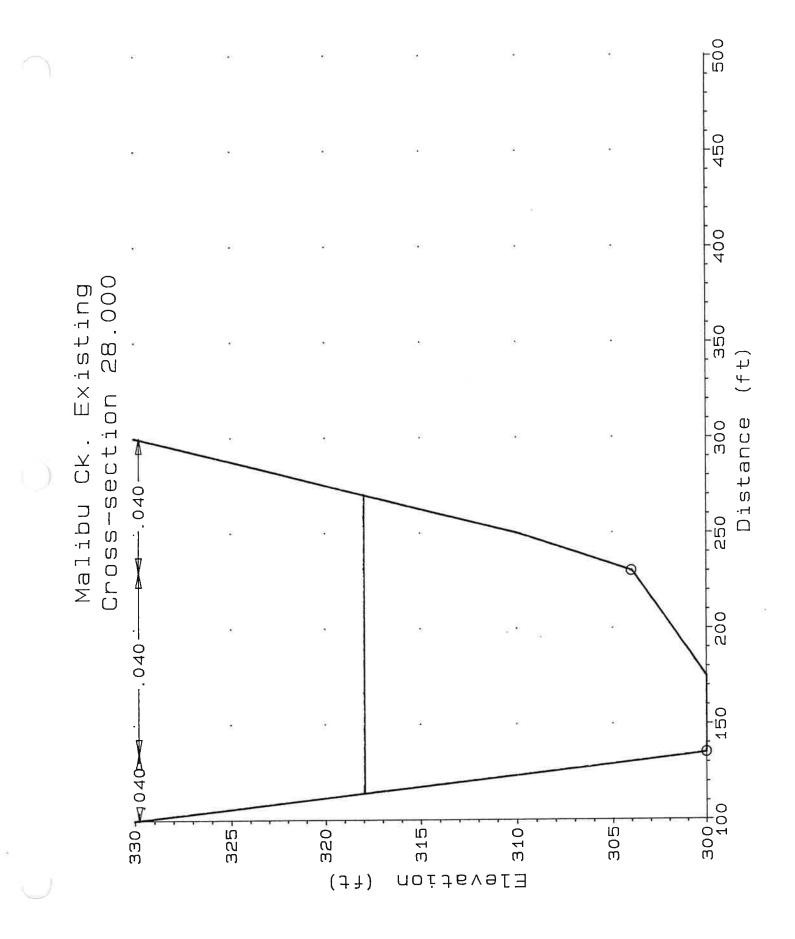

PAGE 18

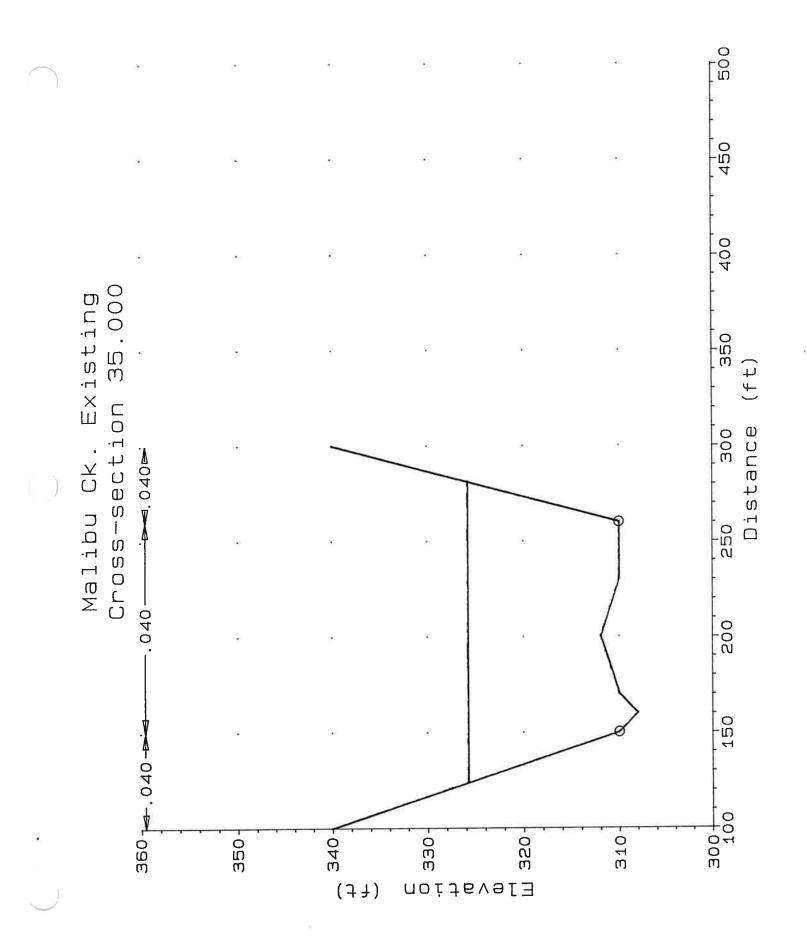

RIVERTECH, INC.

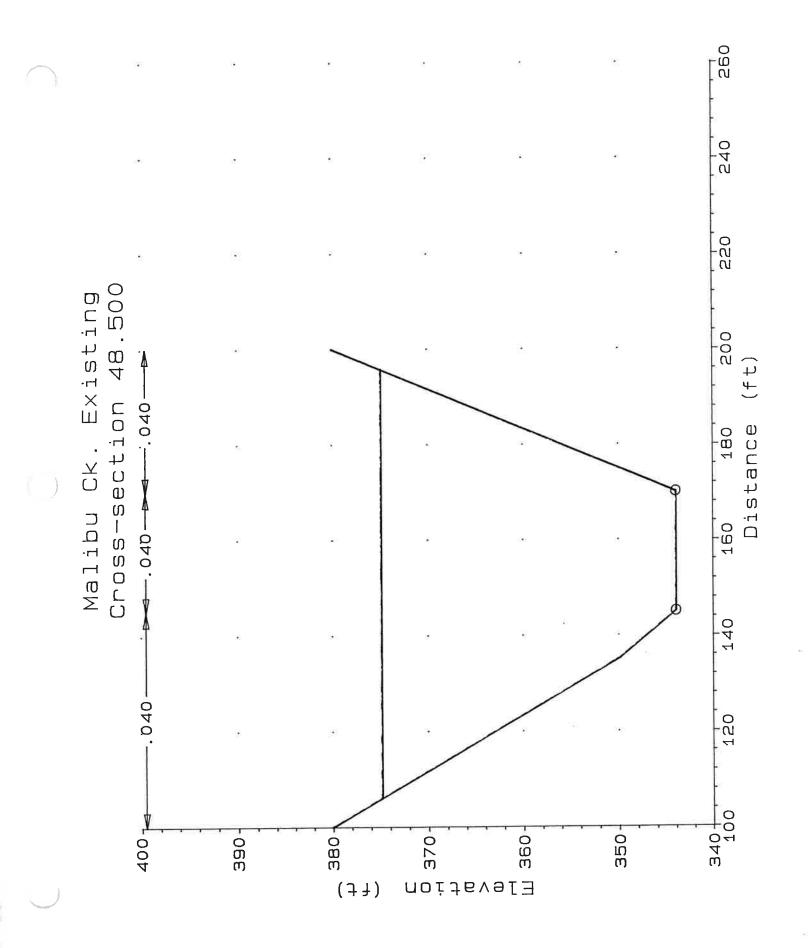

APPENDIX 3

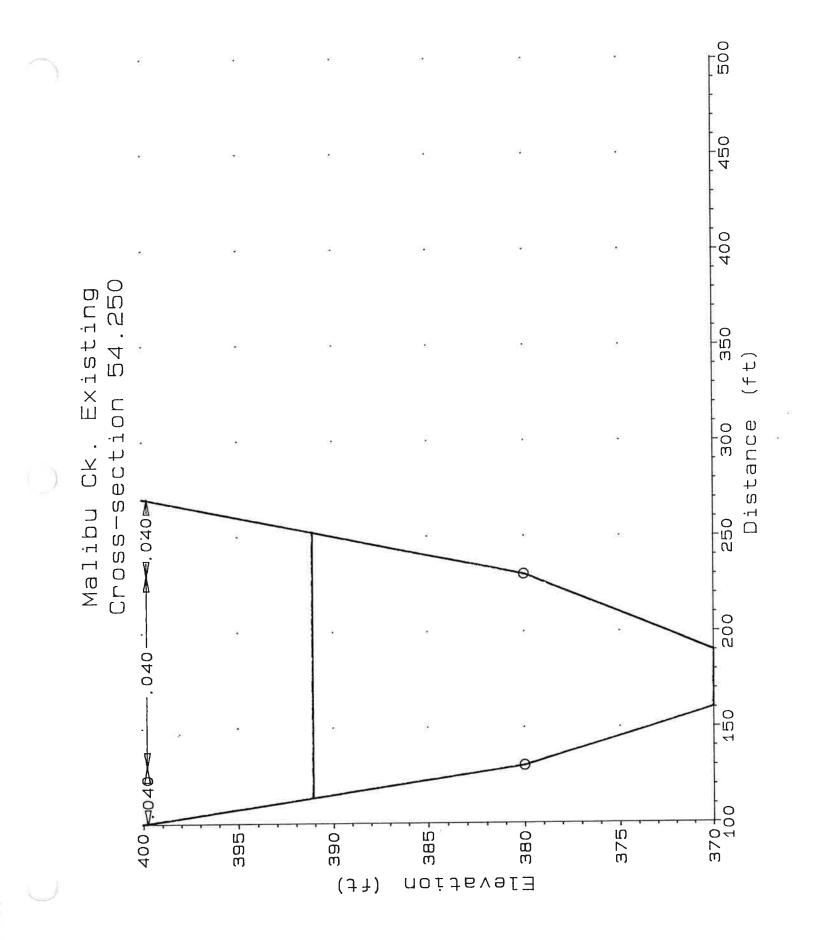

MALIBU CREEK CROSS SECTION PLOTS FOR EXISTING CHANNEL CONDITION

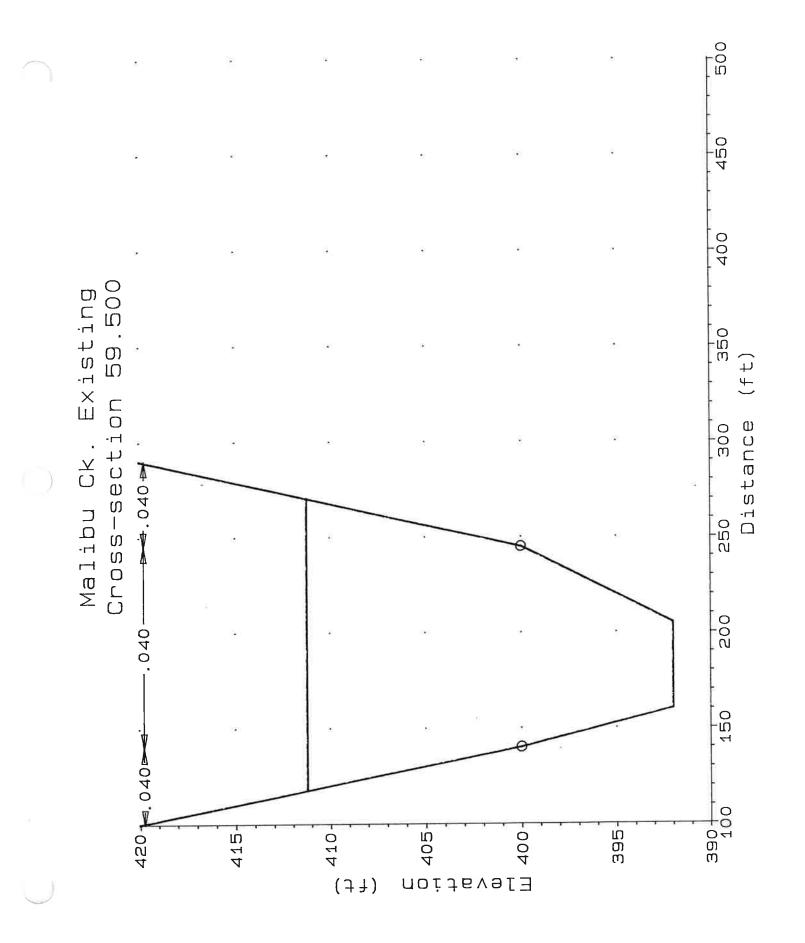


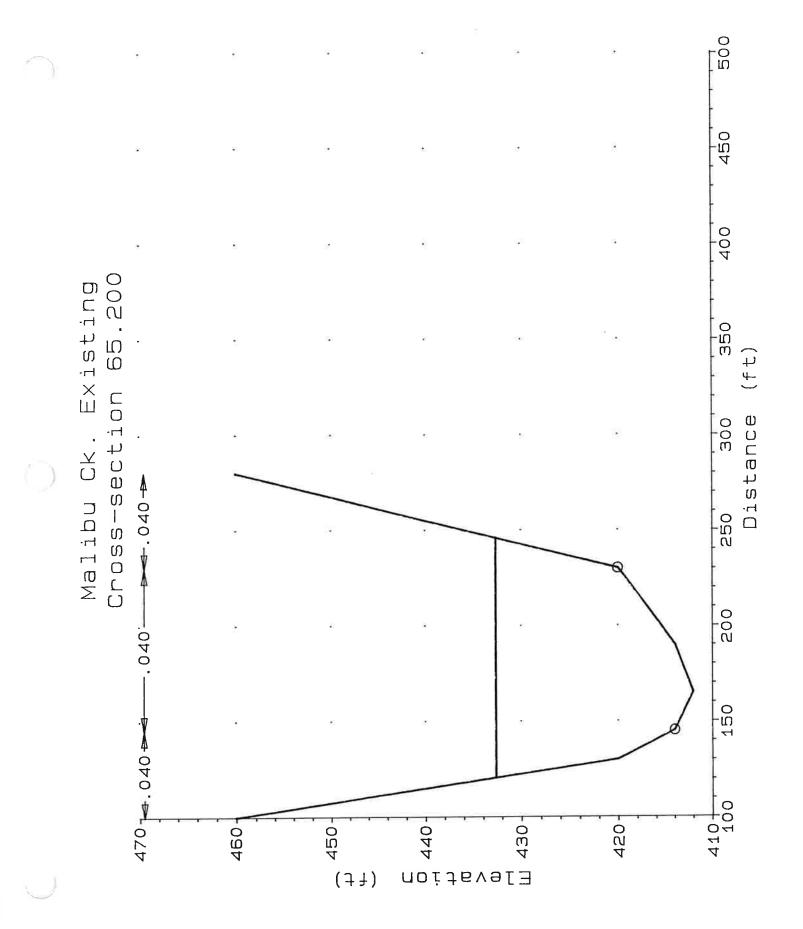


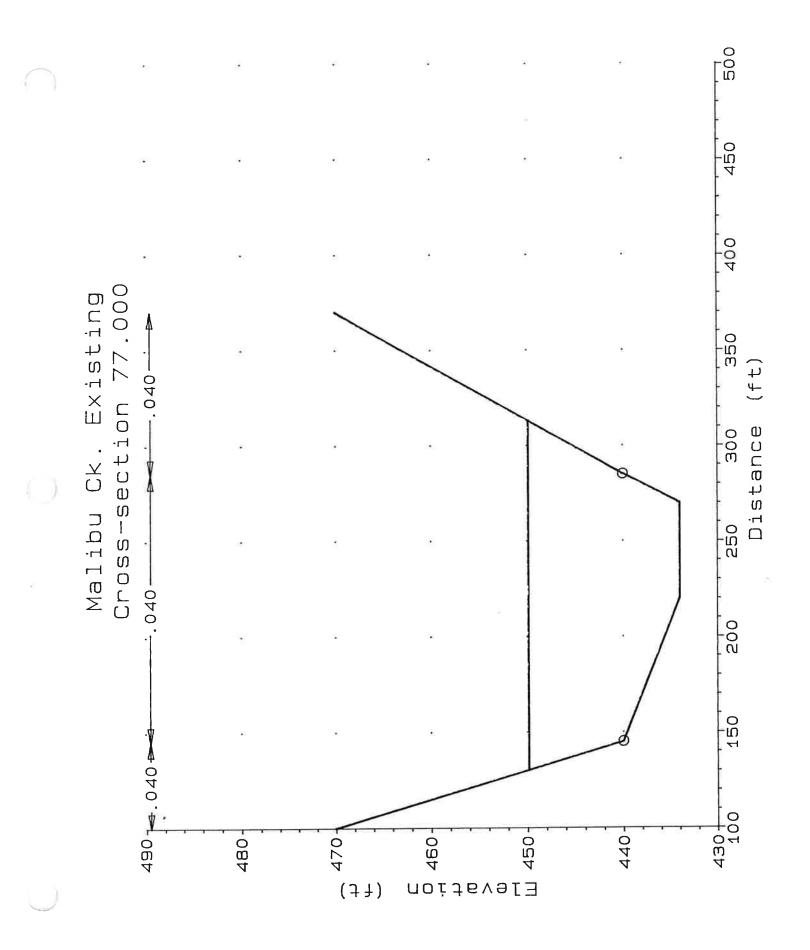


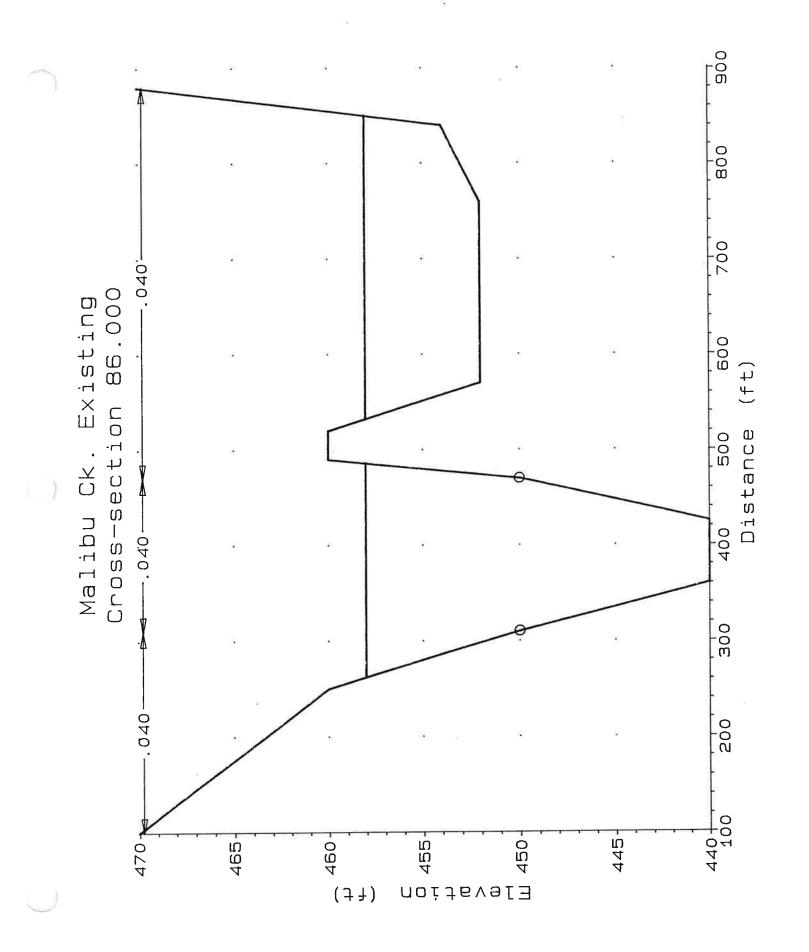


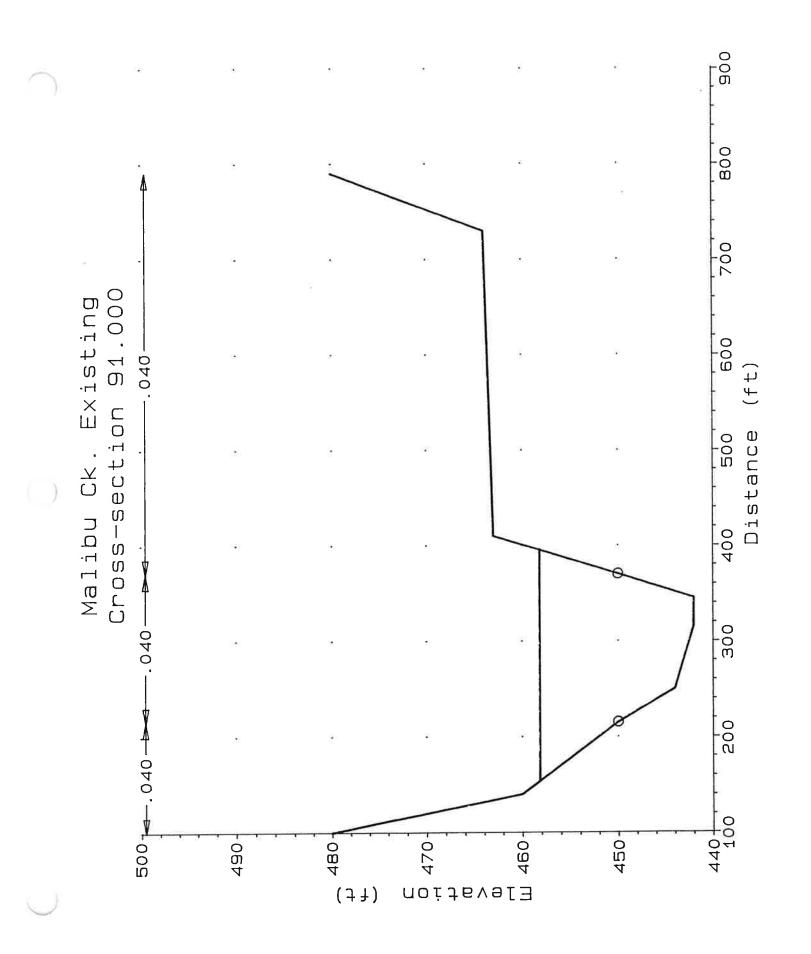


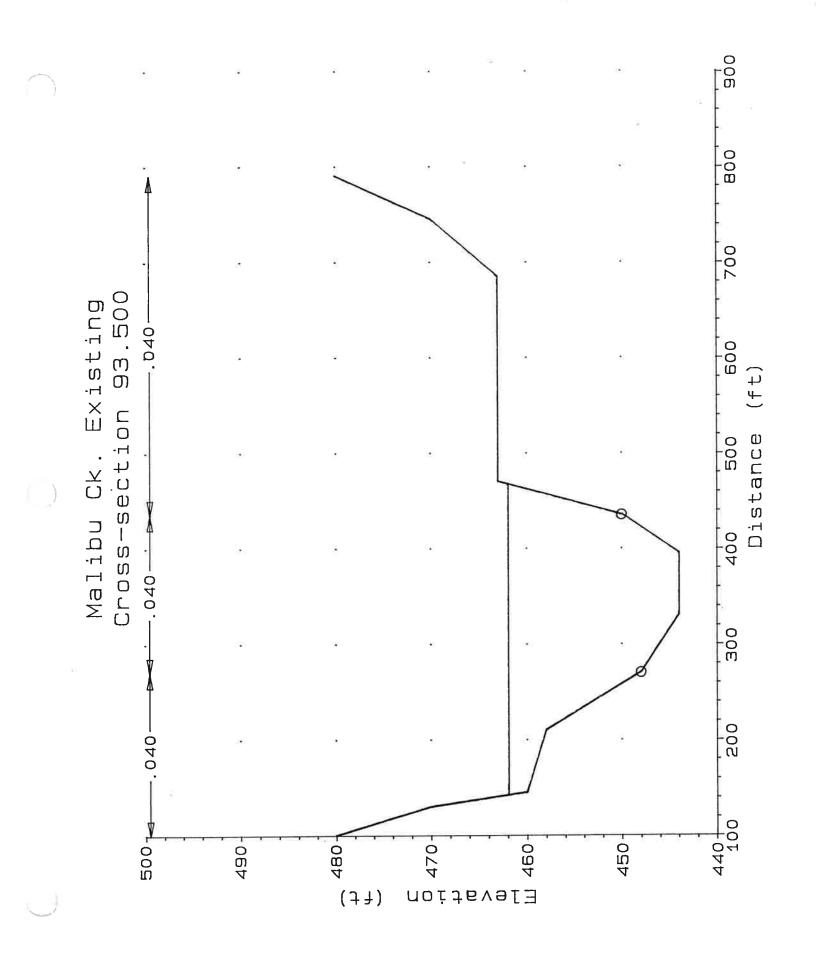


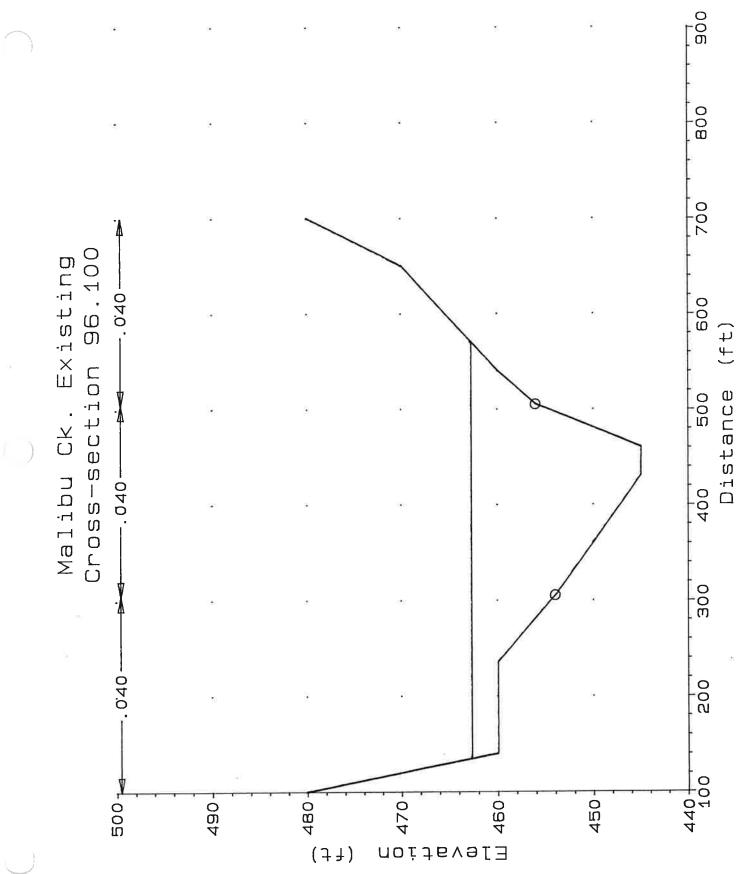


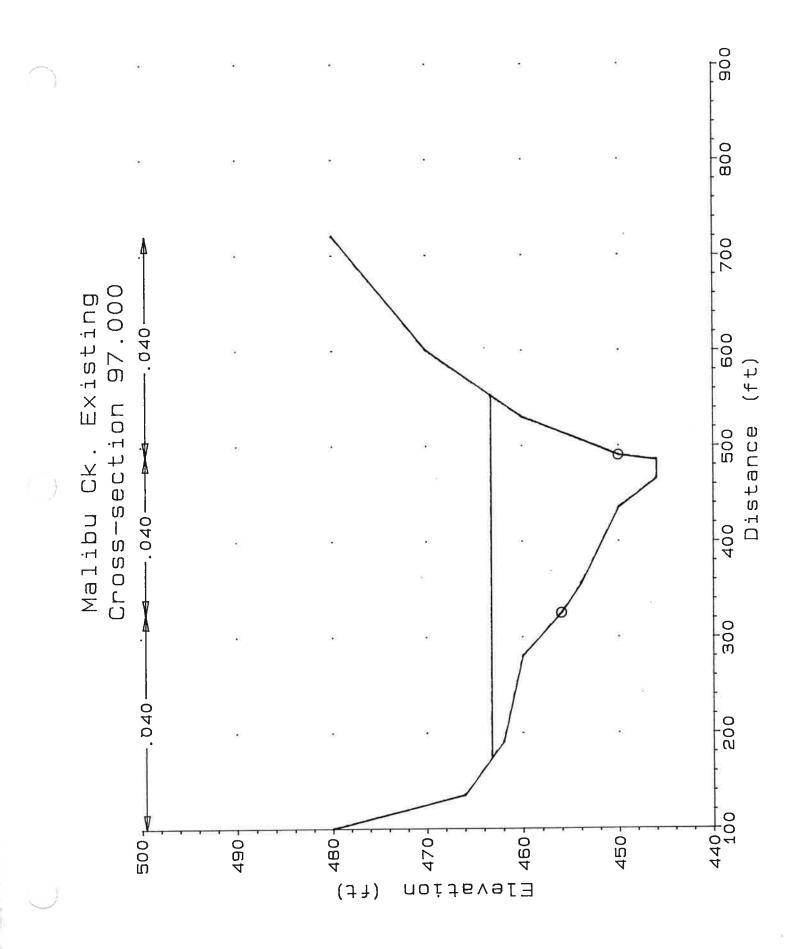


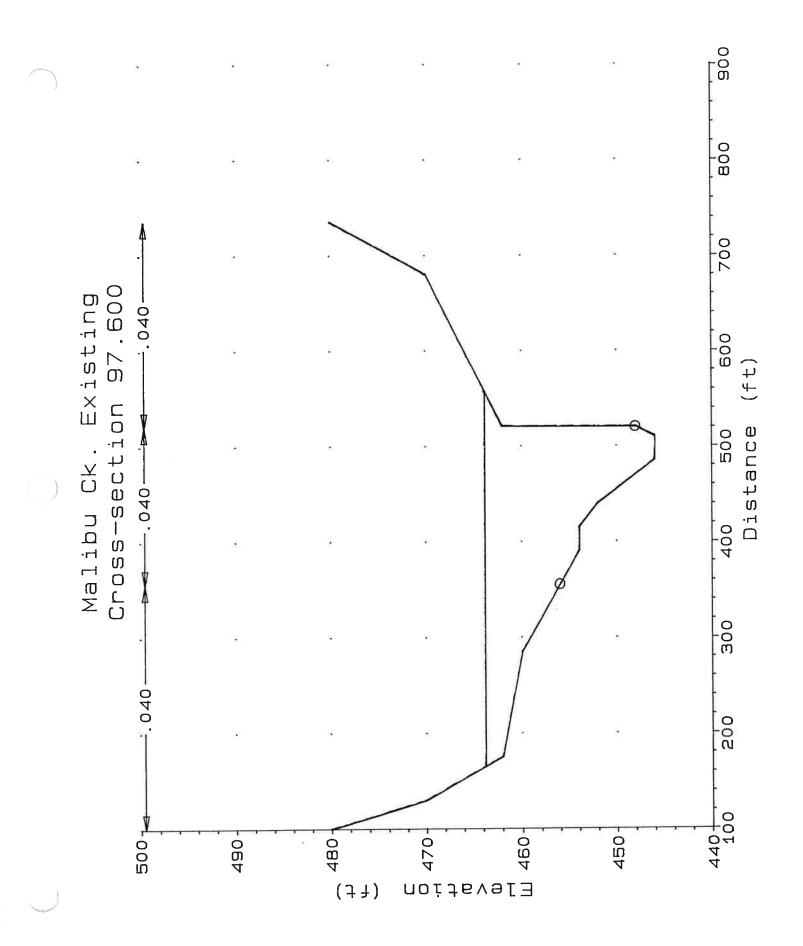


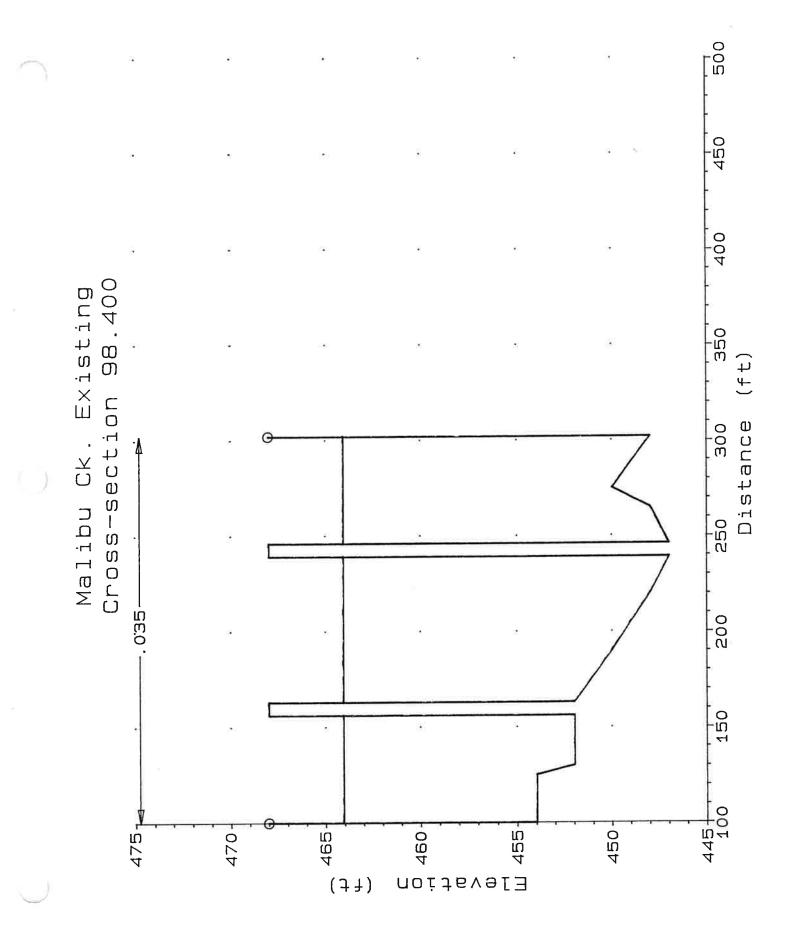


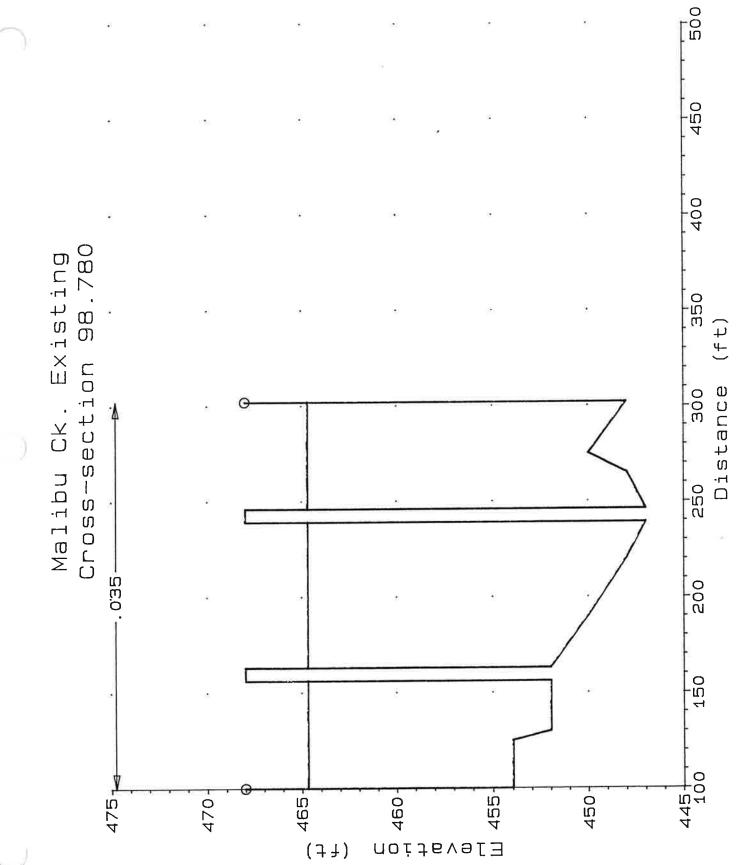


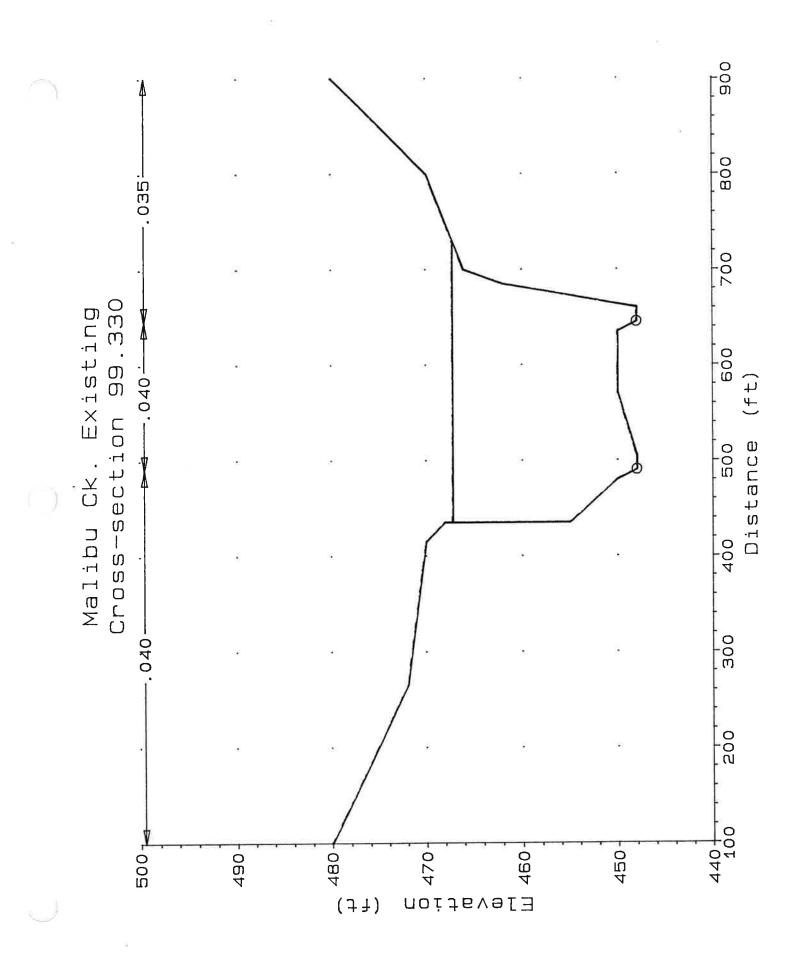


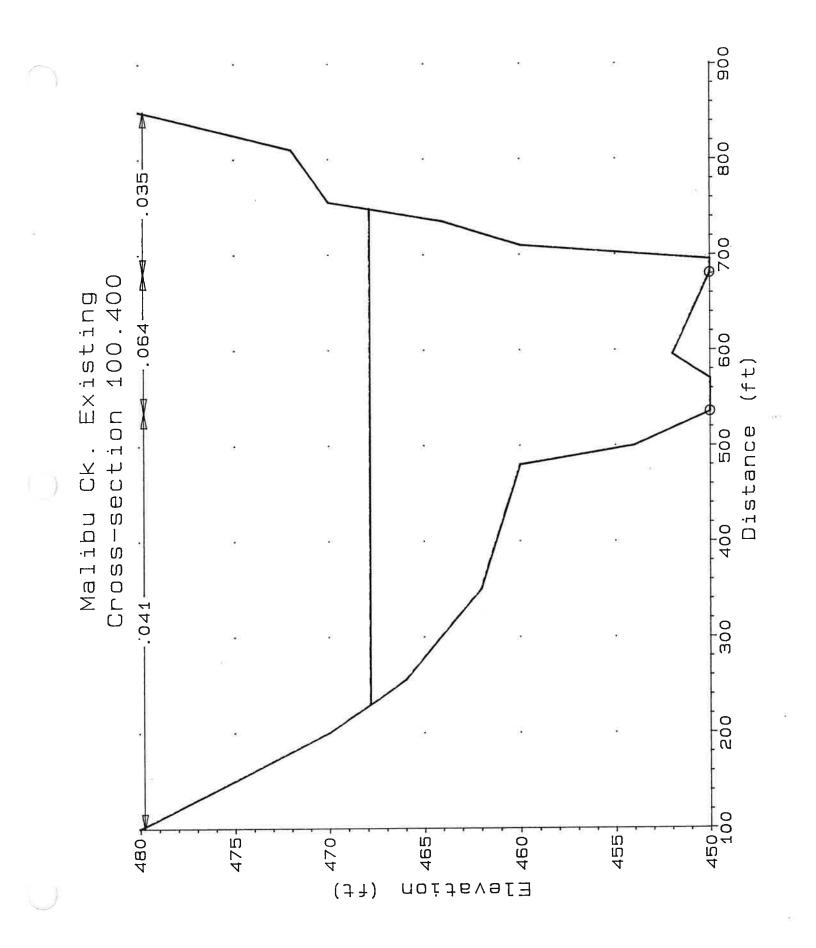


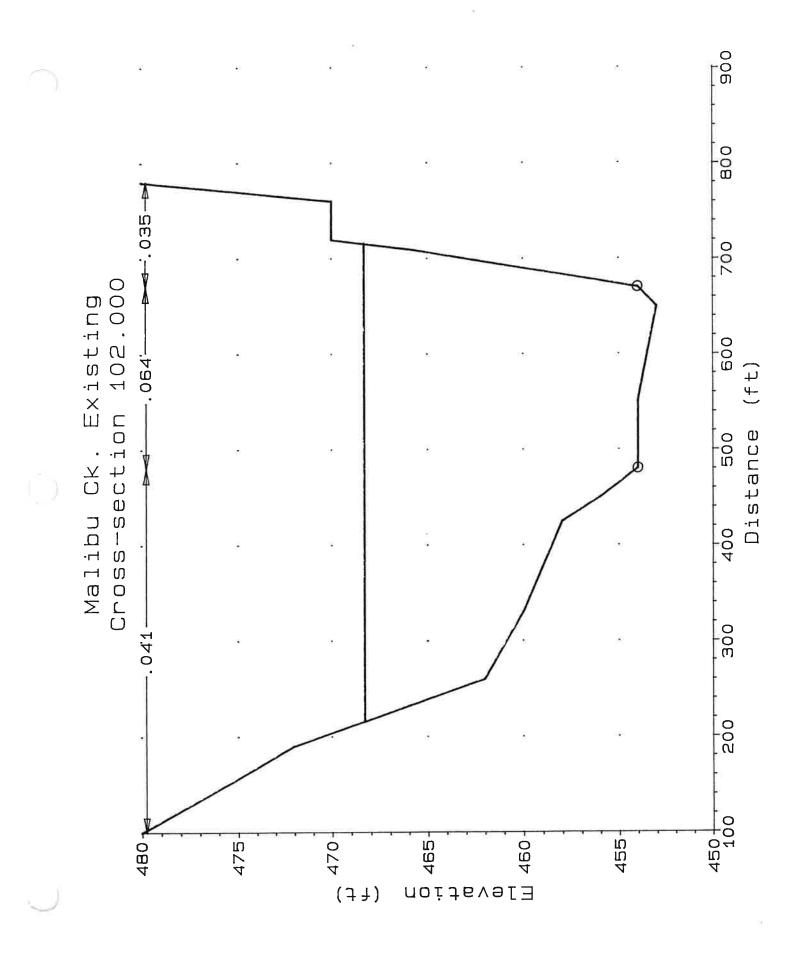


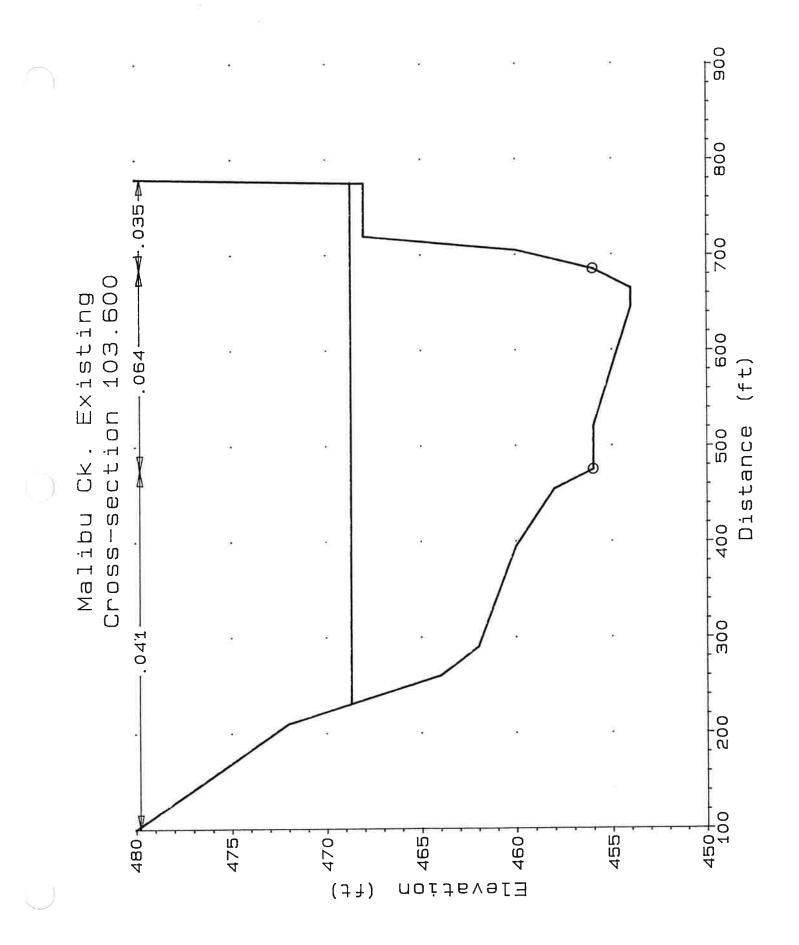


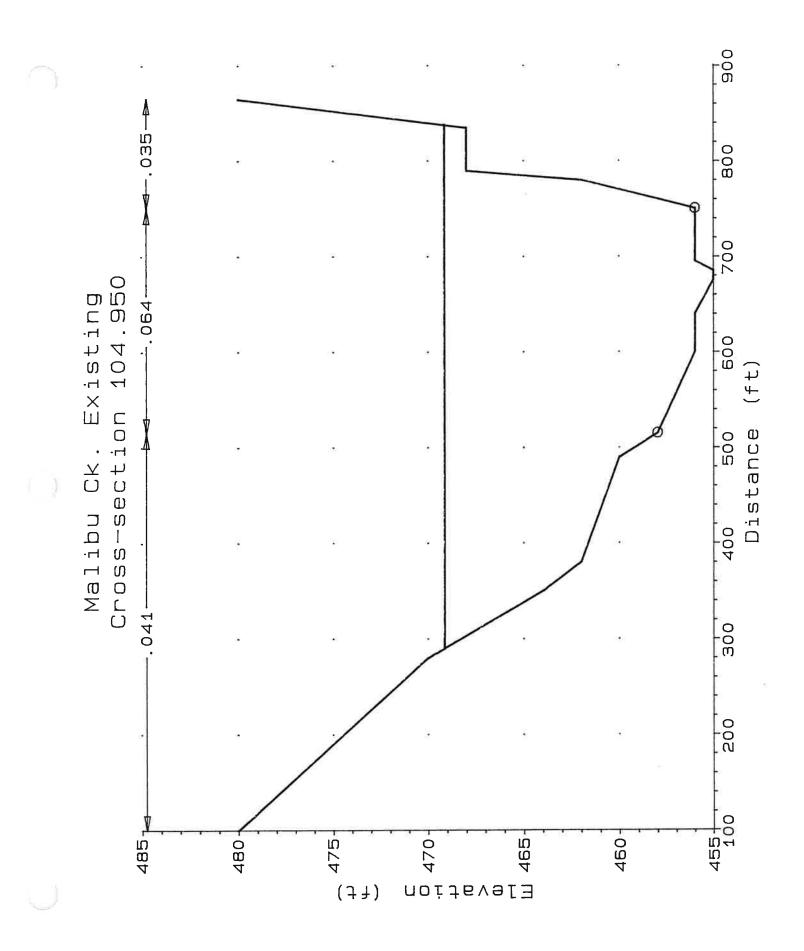


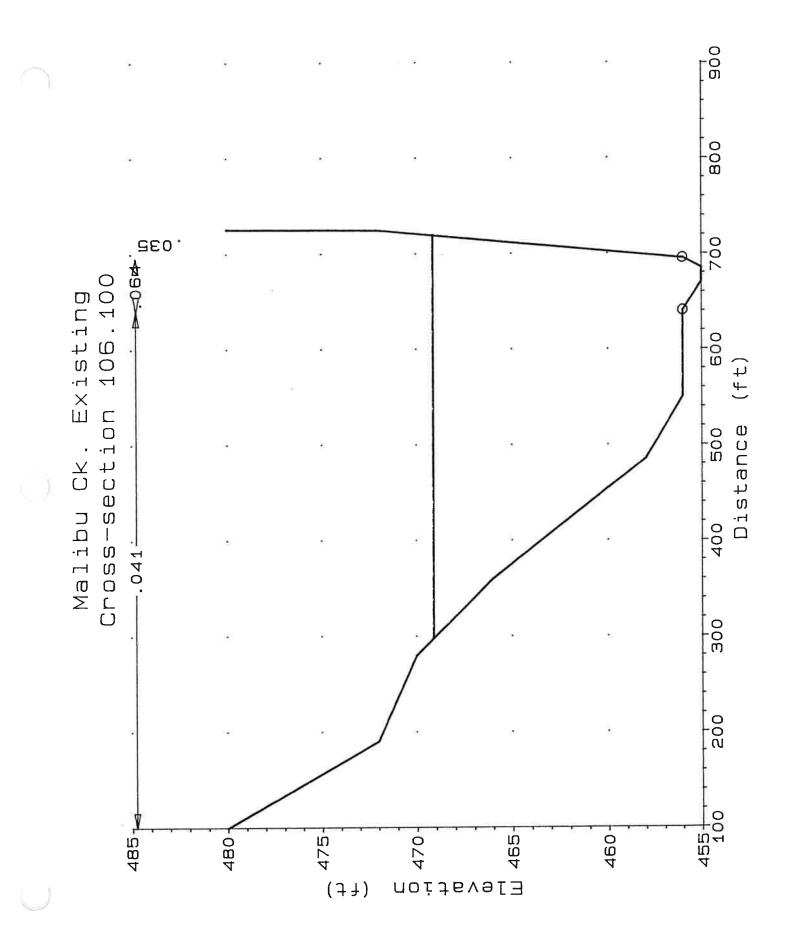


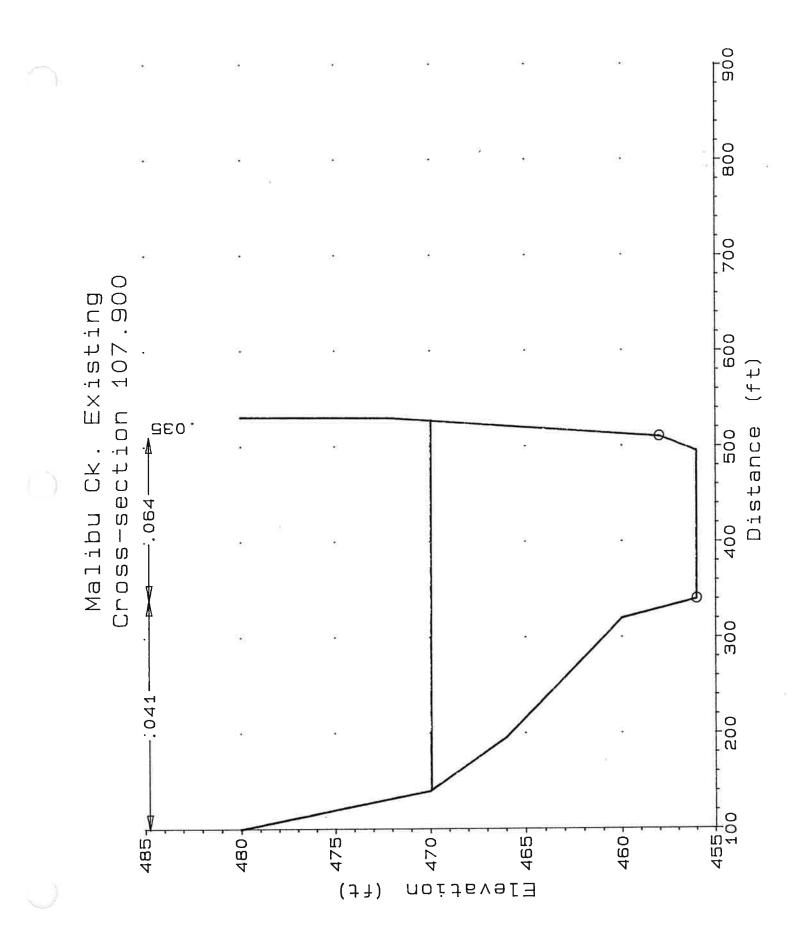


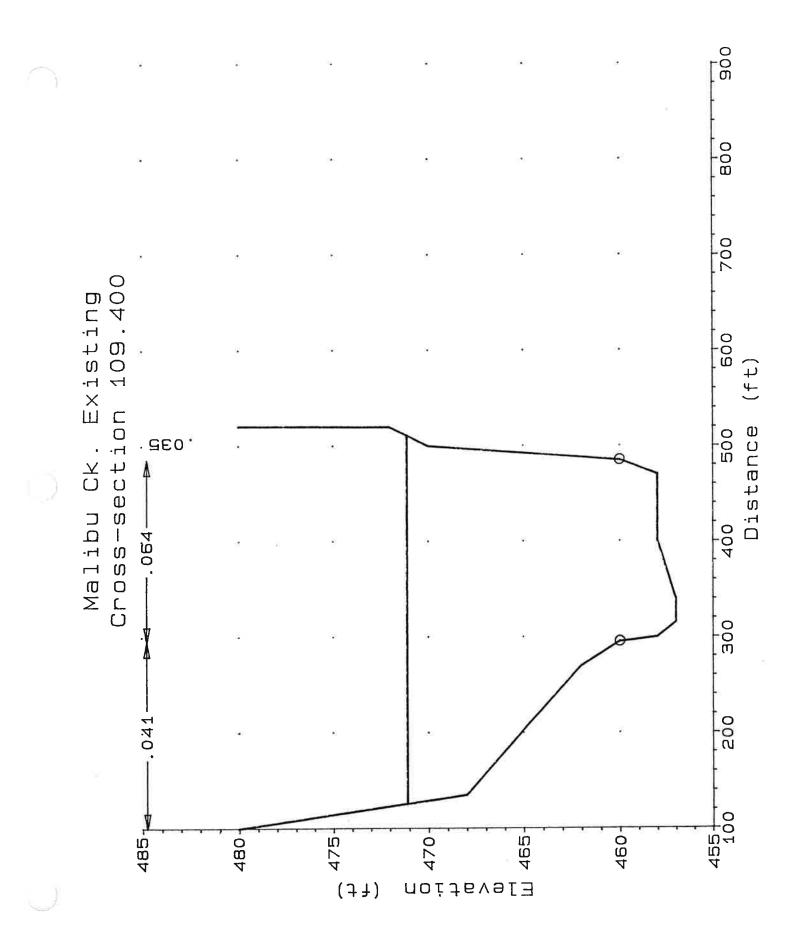


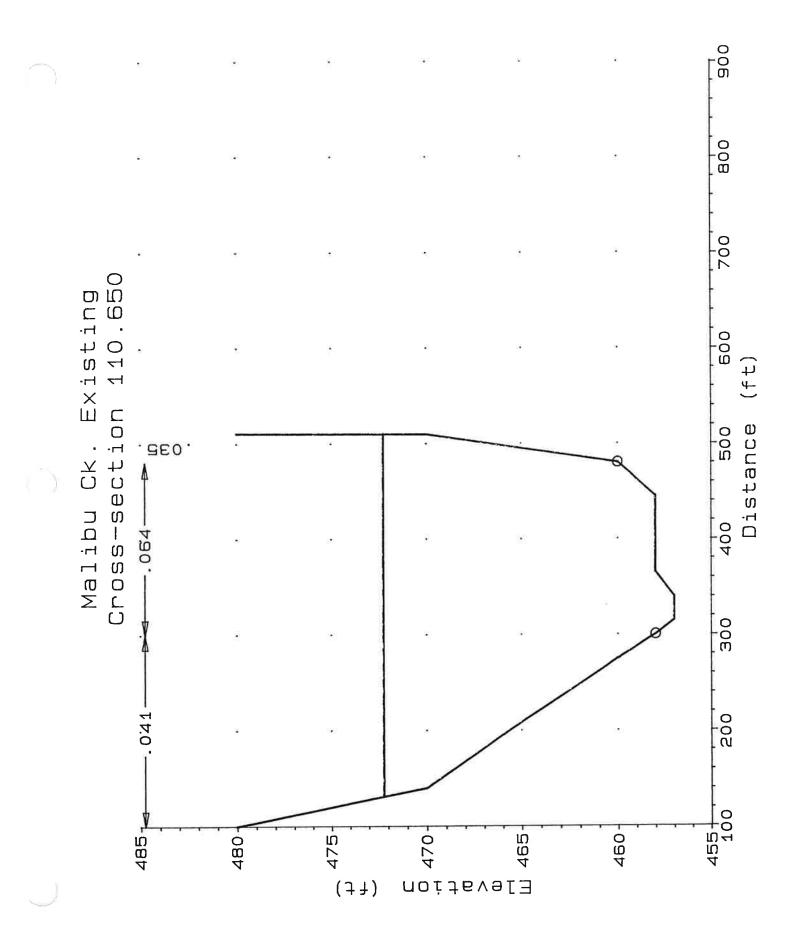


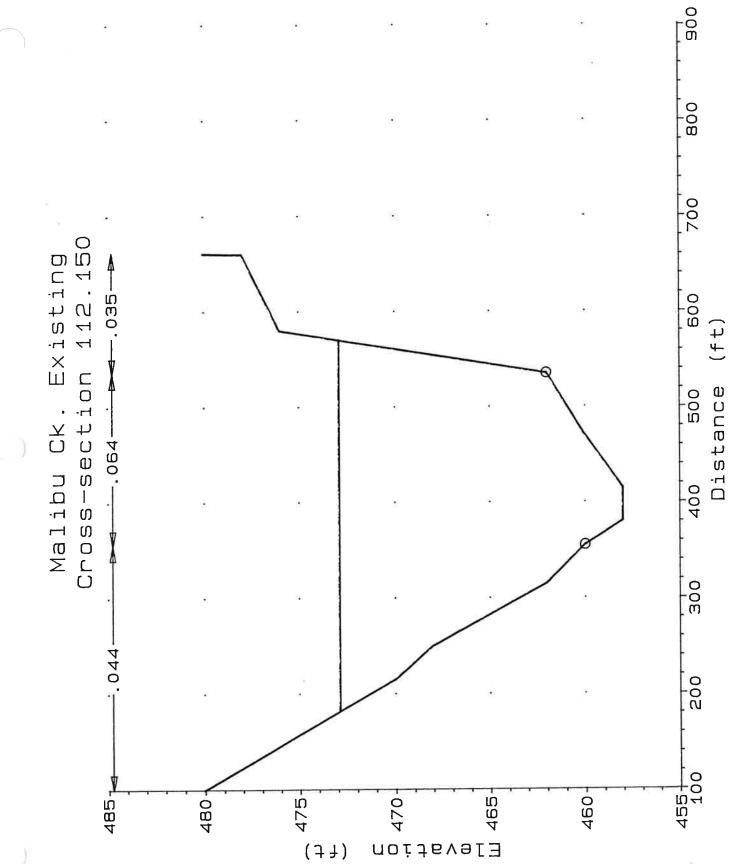


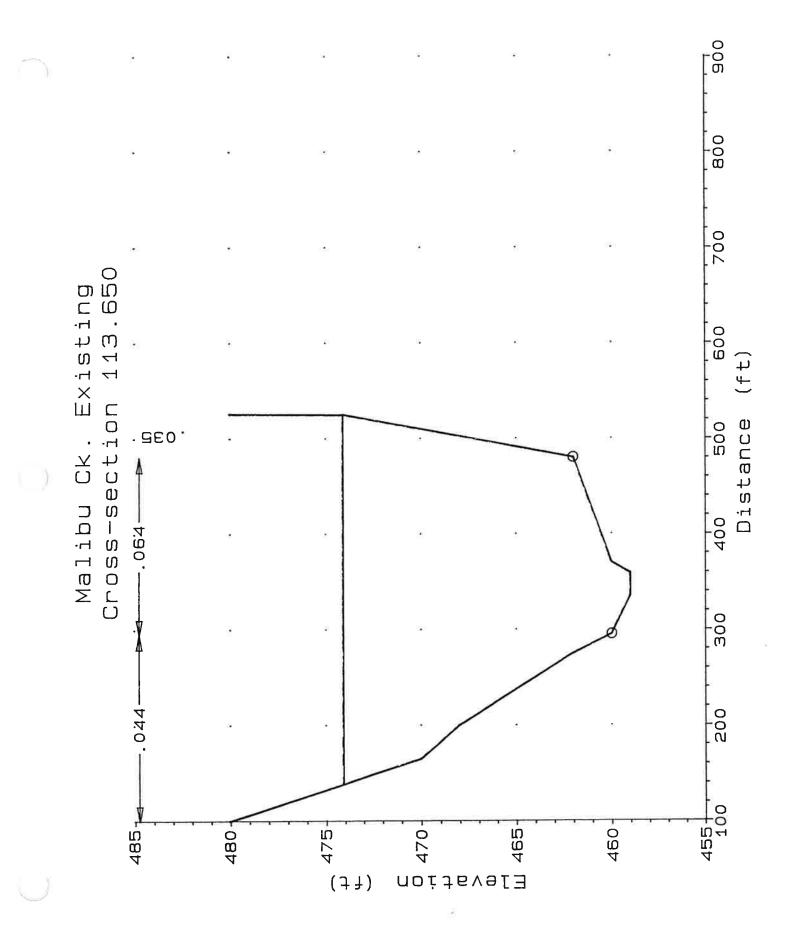


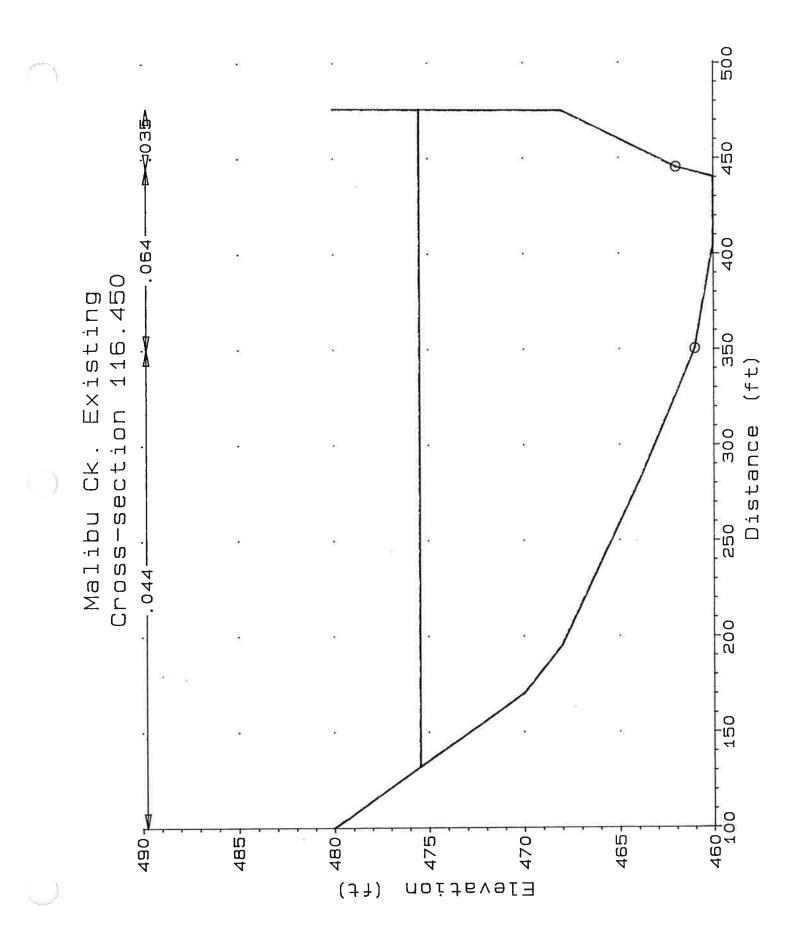


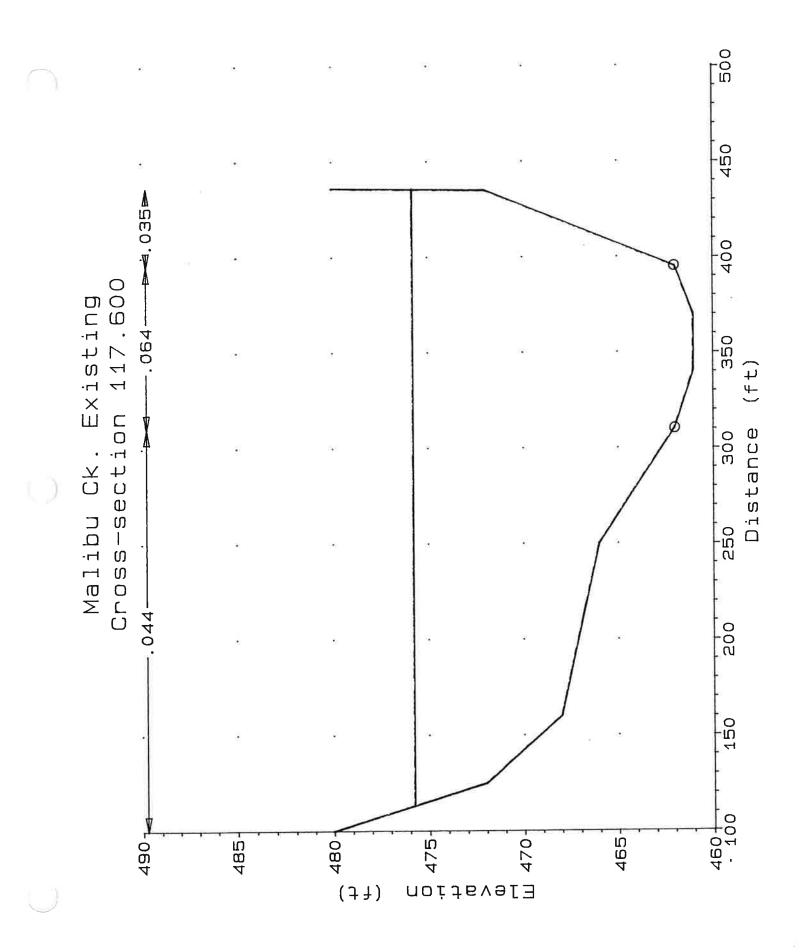


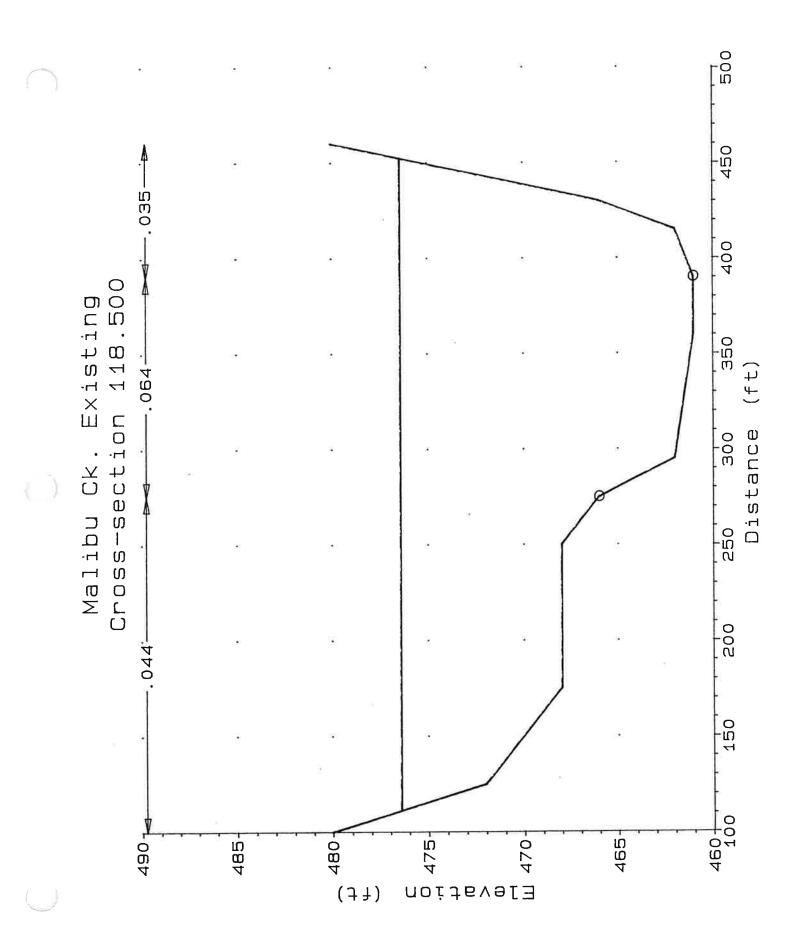


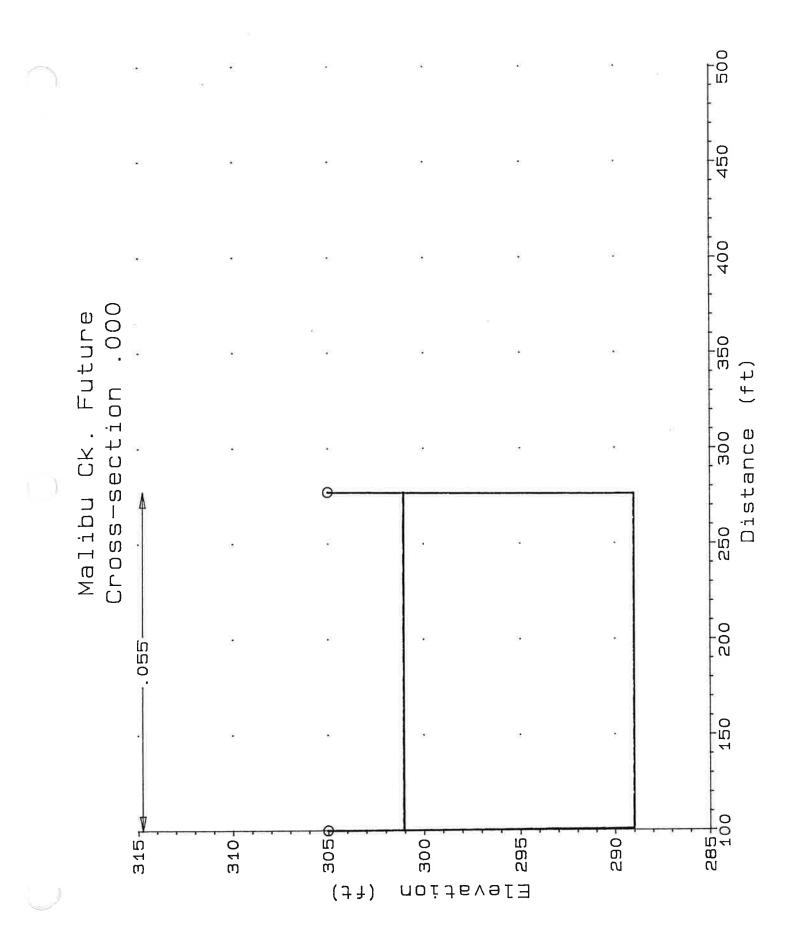


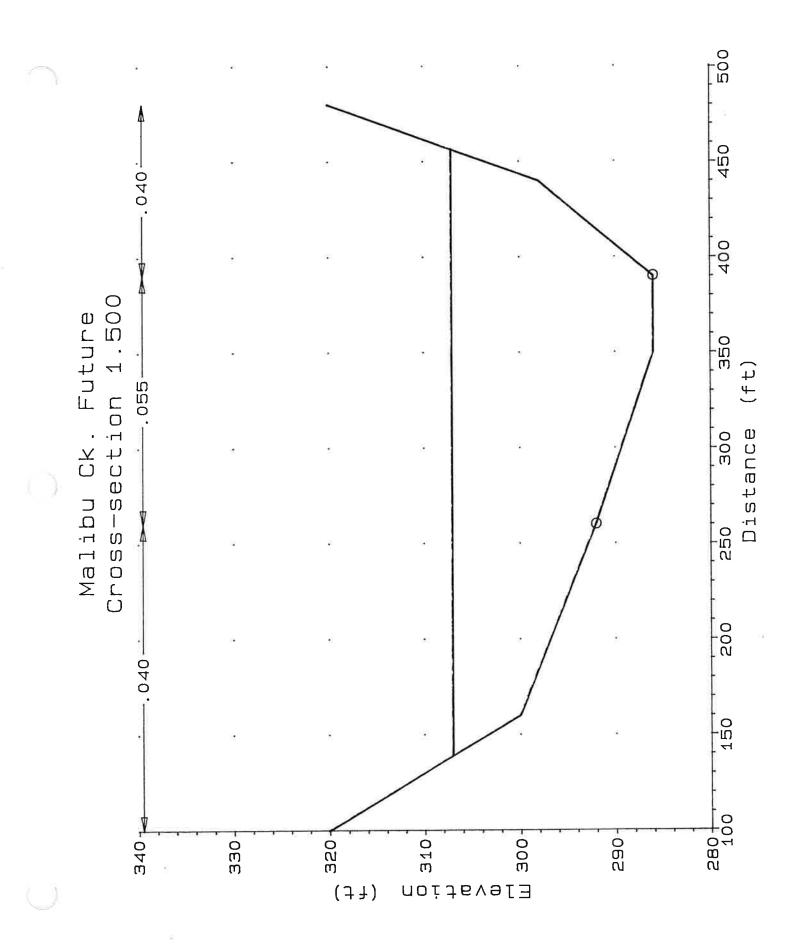


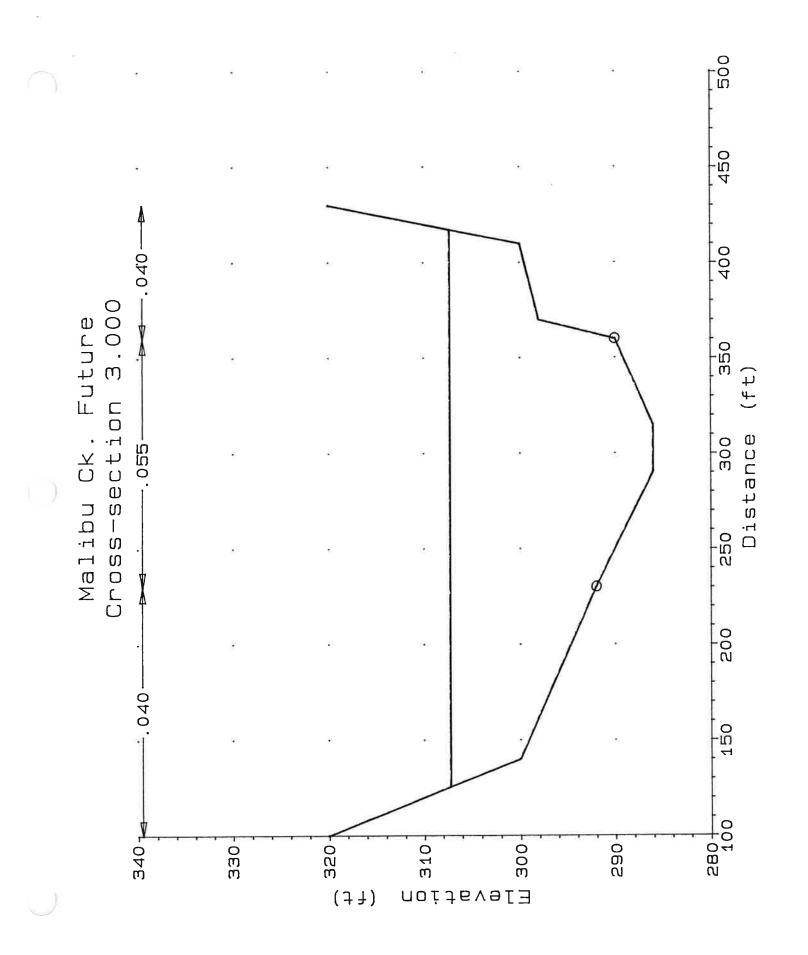


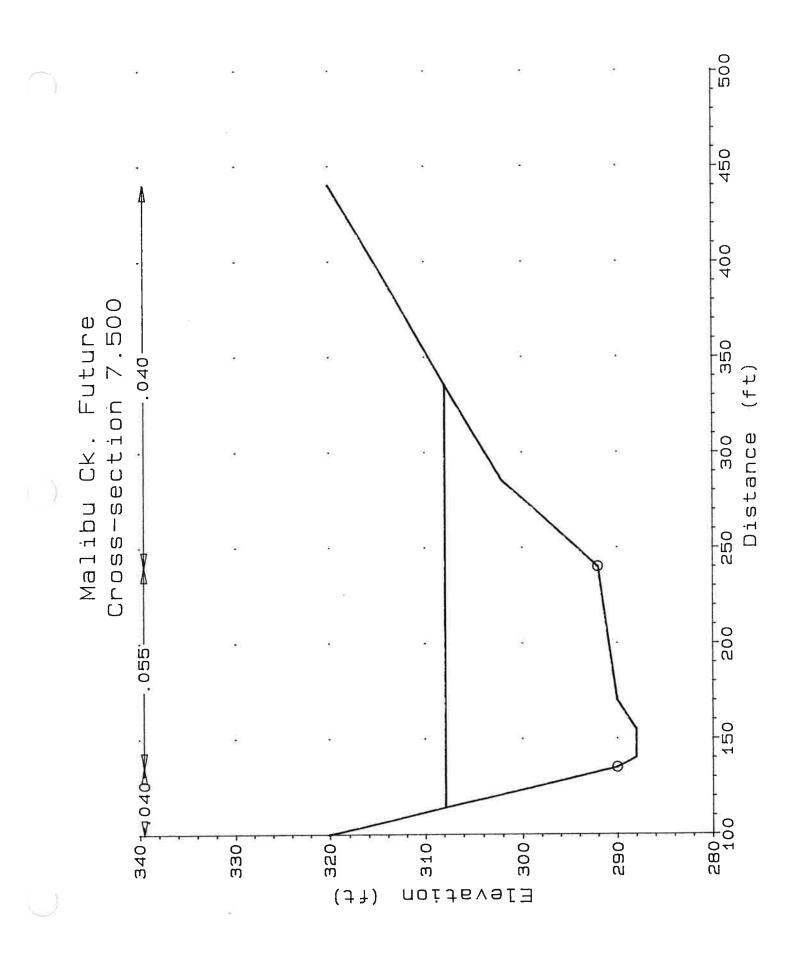


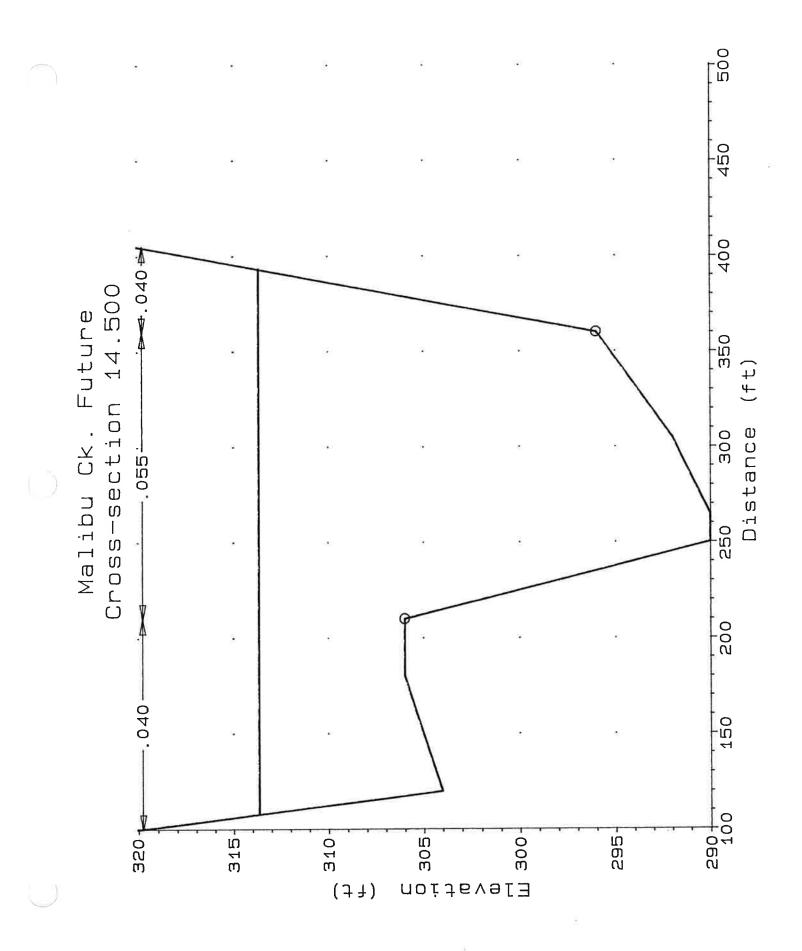


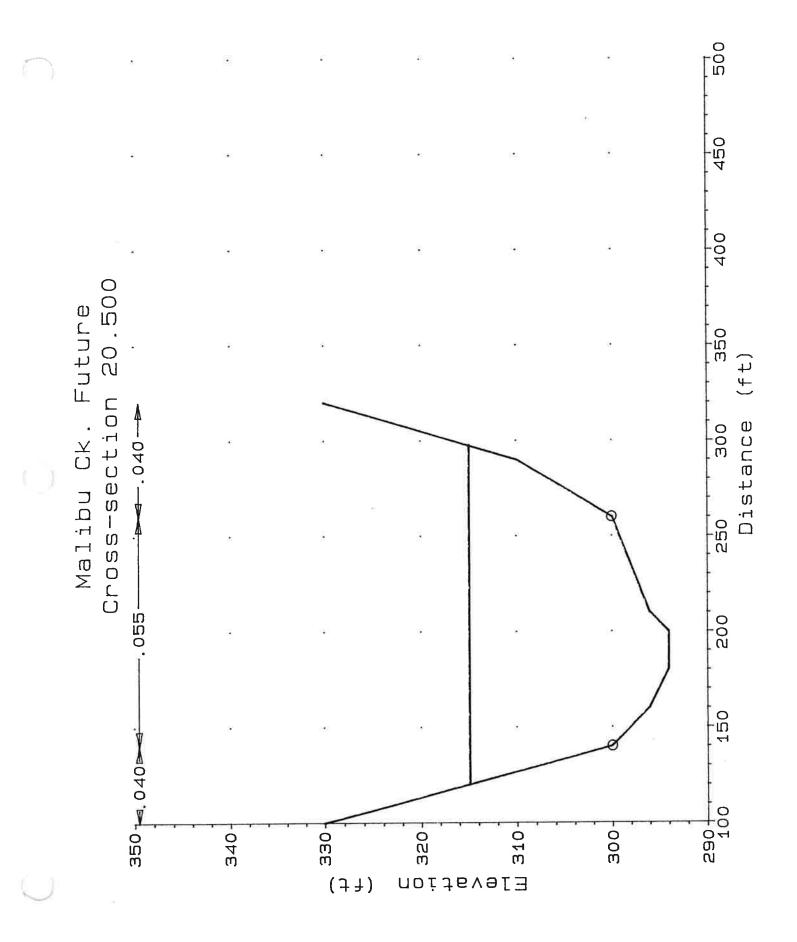


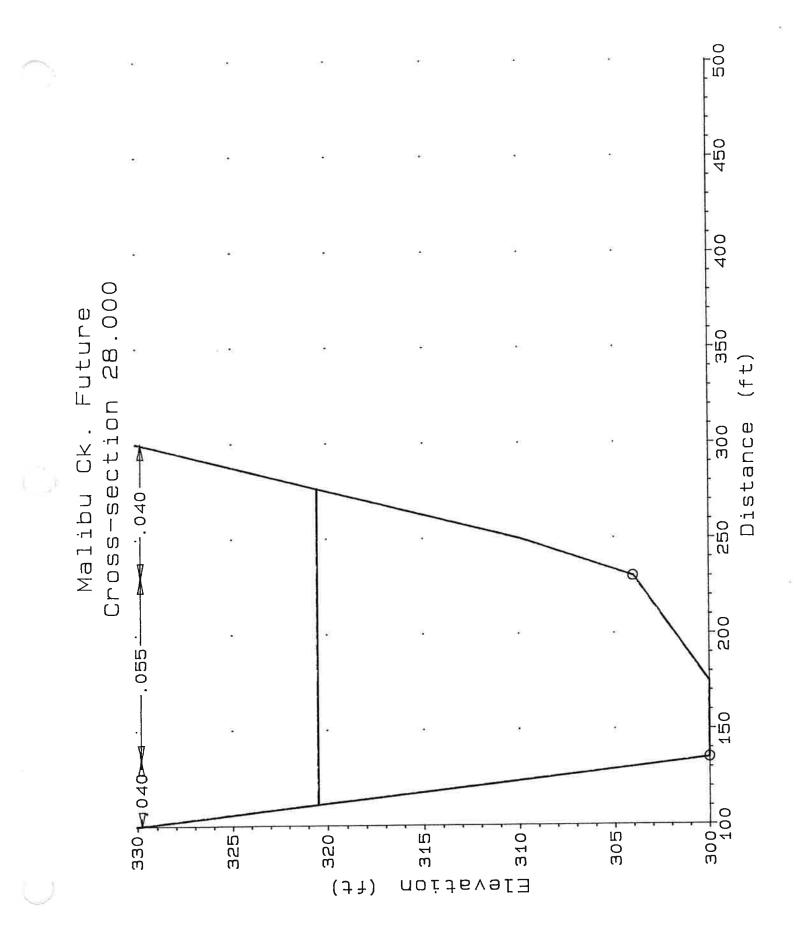


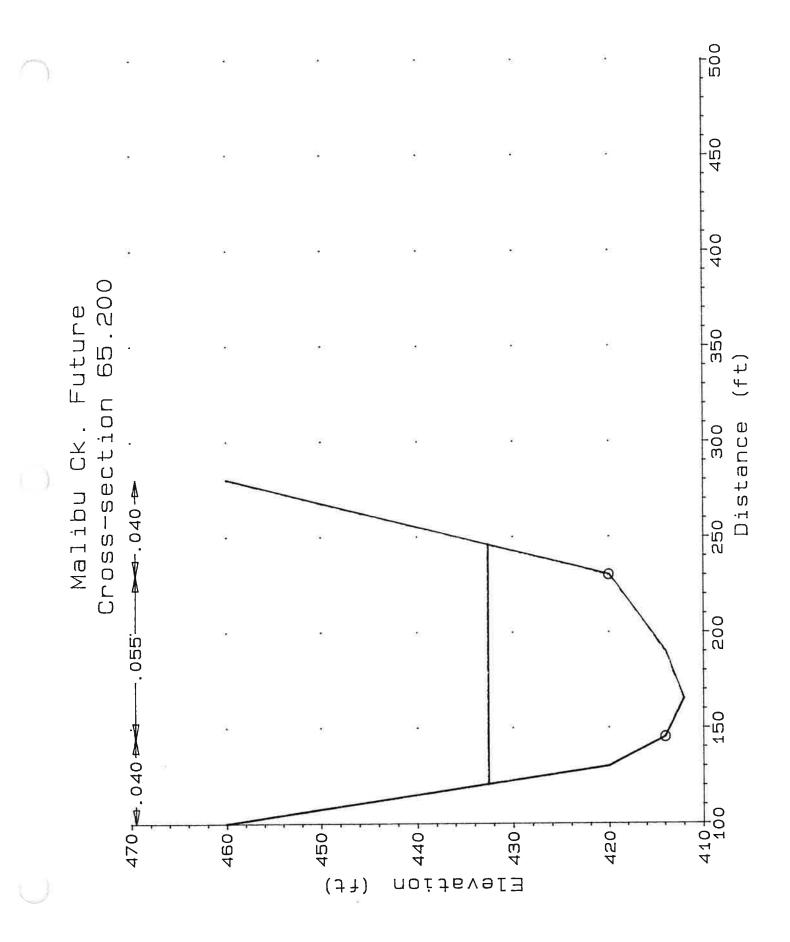

RIVERTECH, INC.

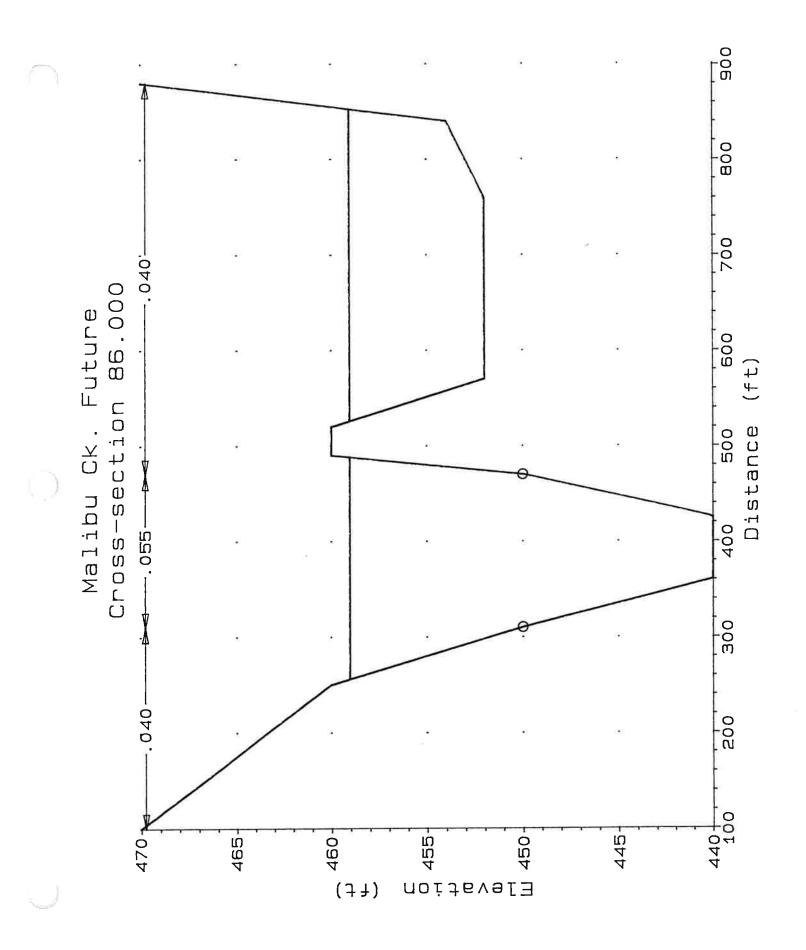

APPENDIX 4

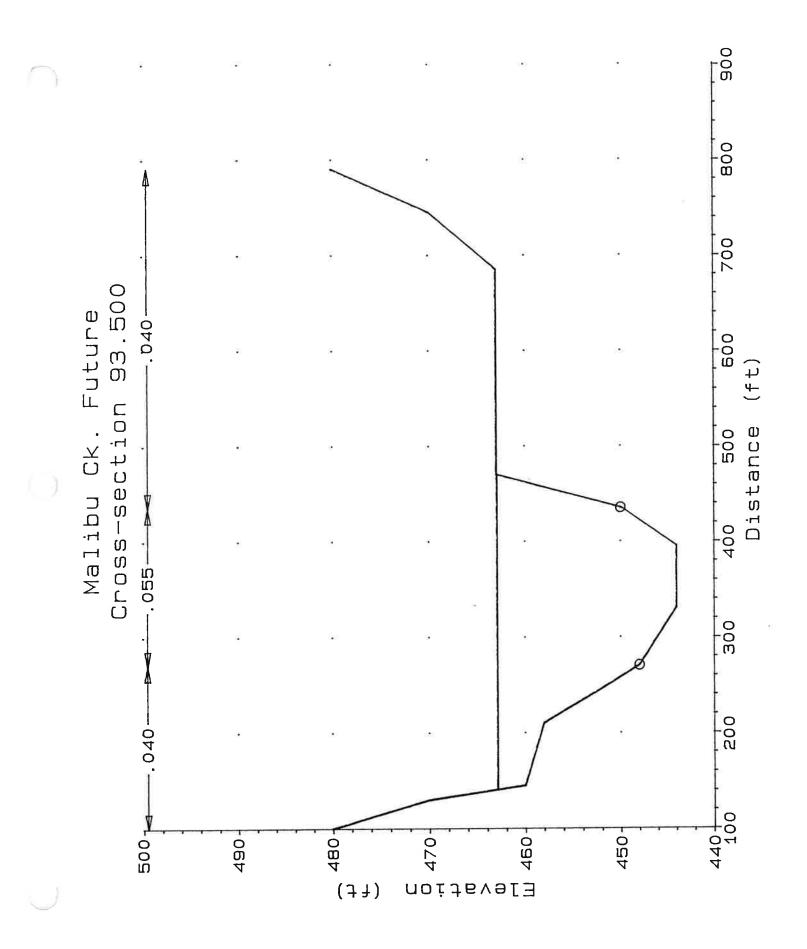

MALIBU CREEK CROSS SECTION PLOTS FOR ULTIMATE CHANNEL CONDITION

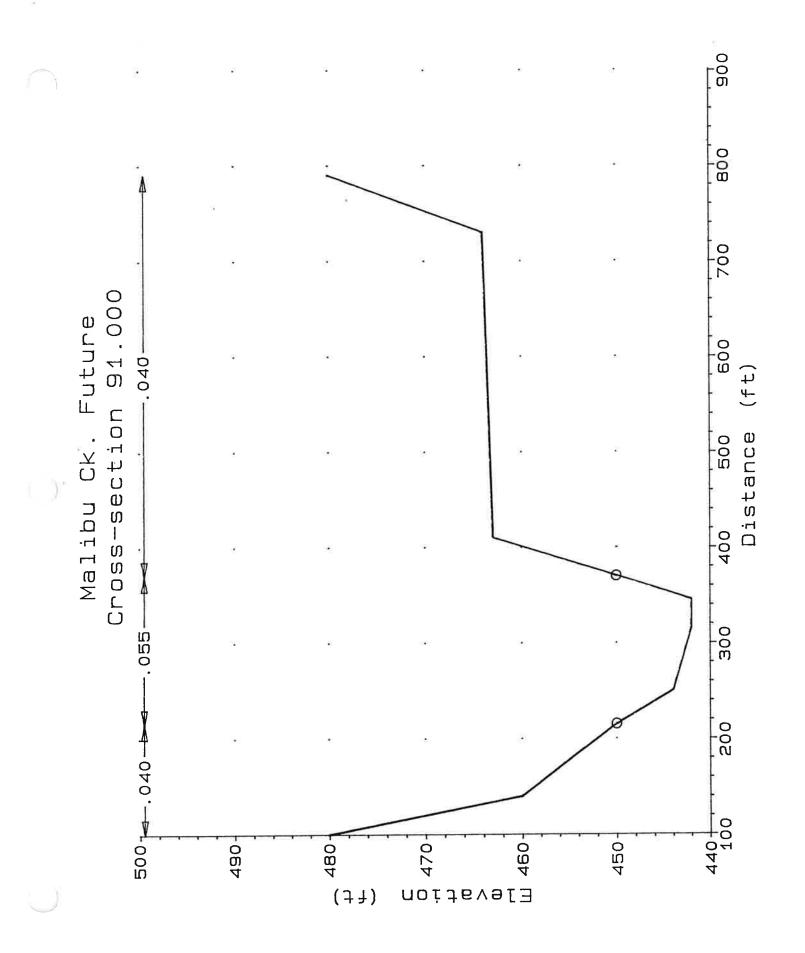


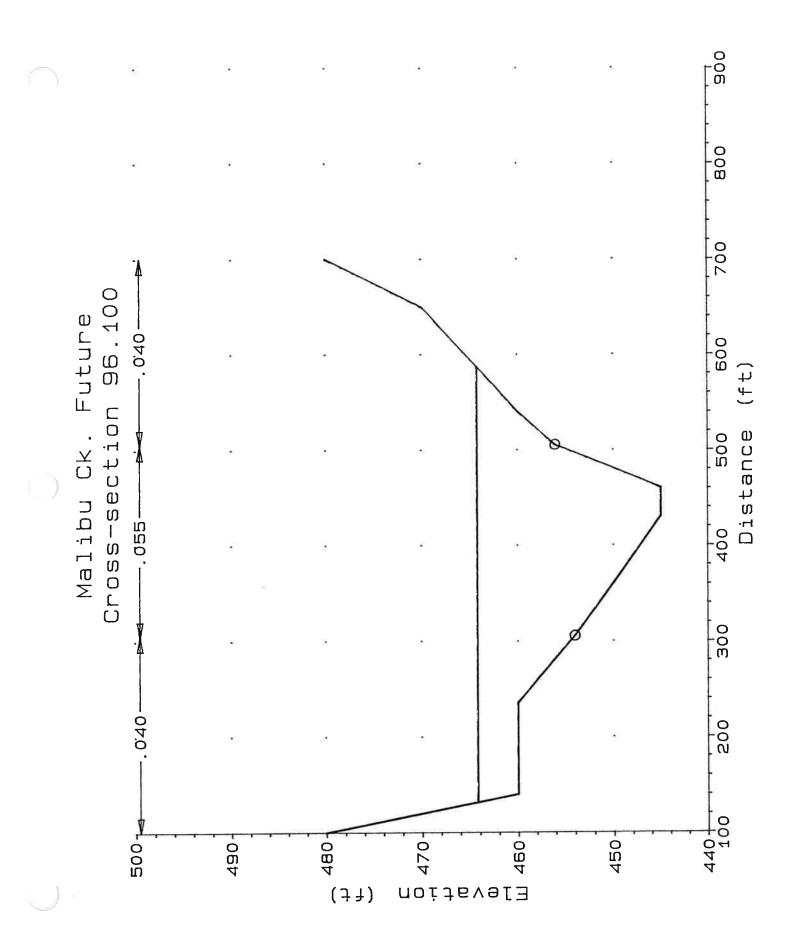


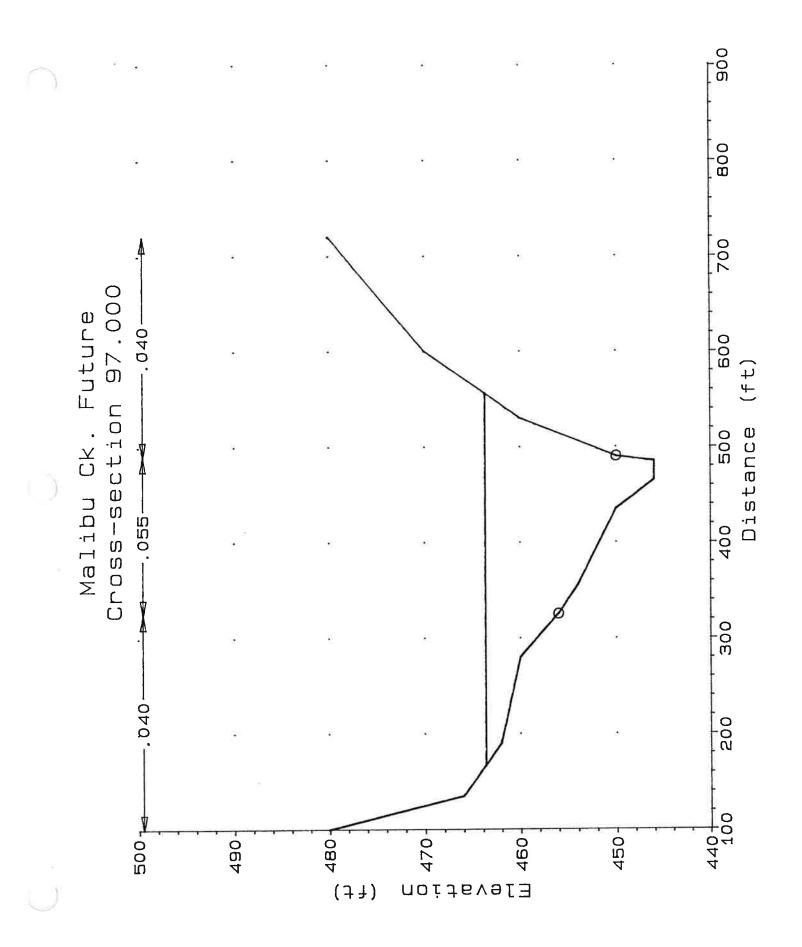


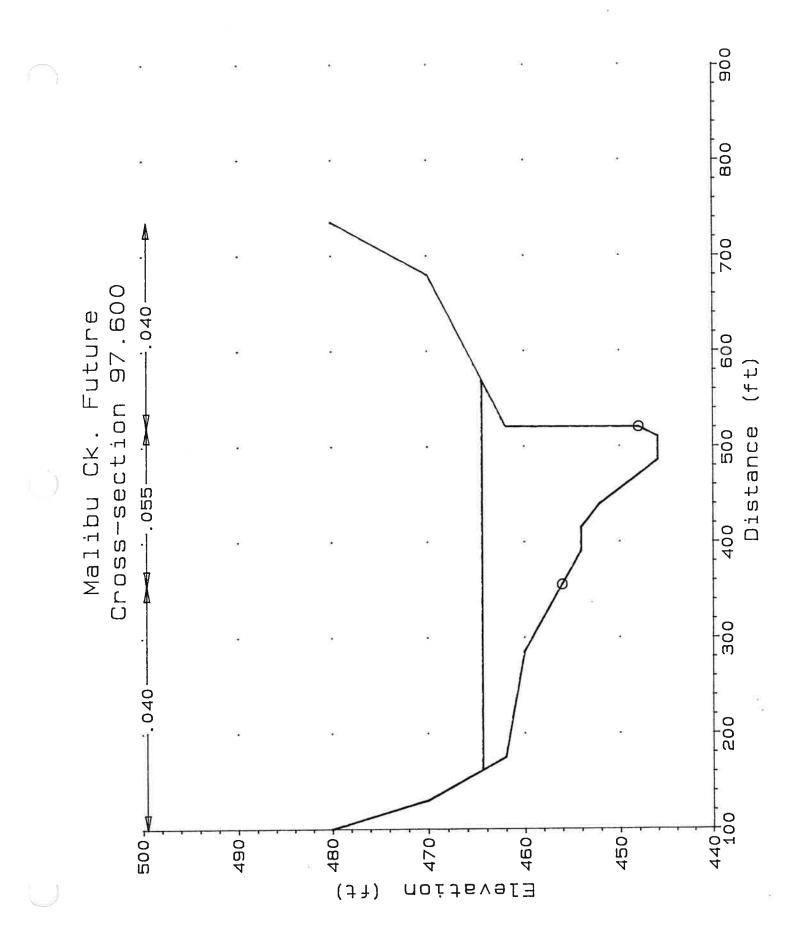


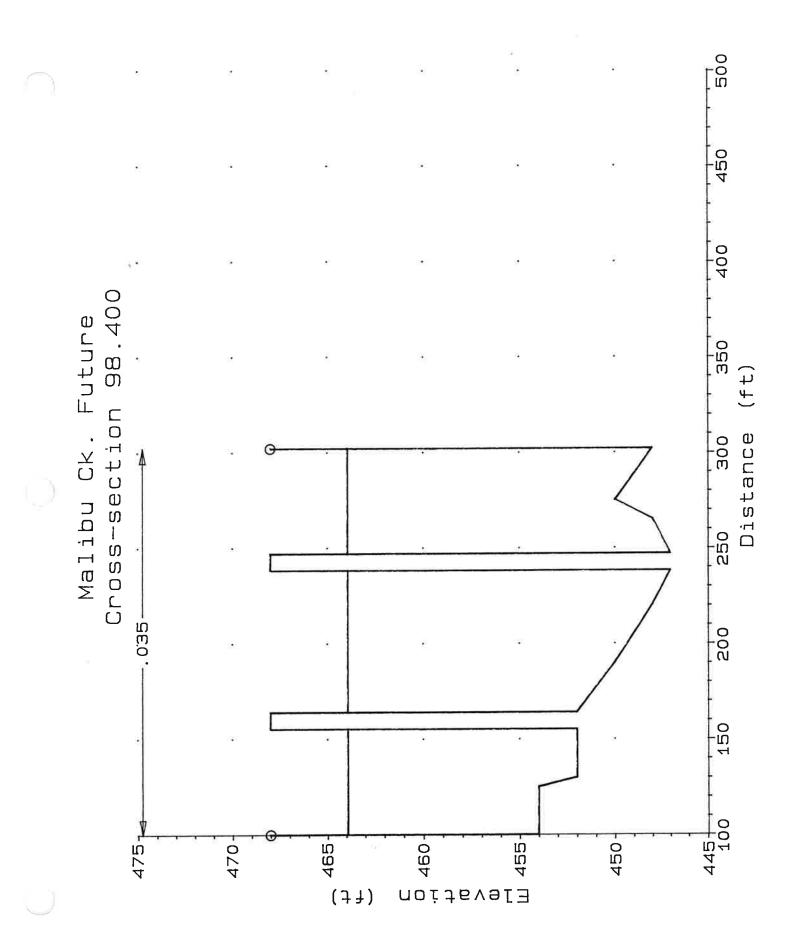


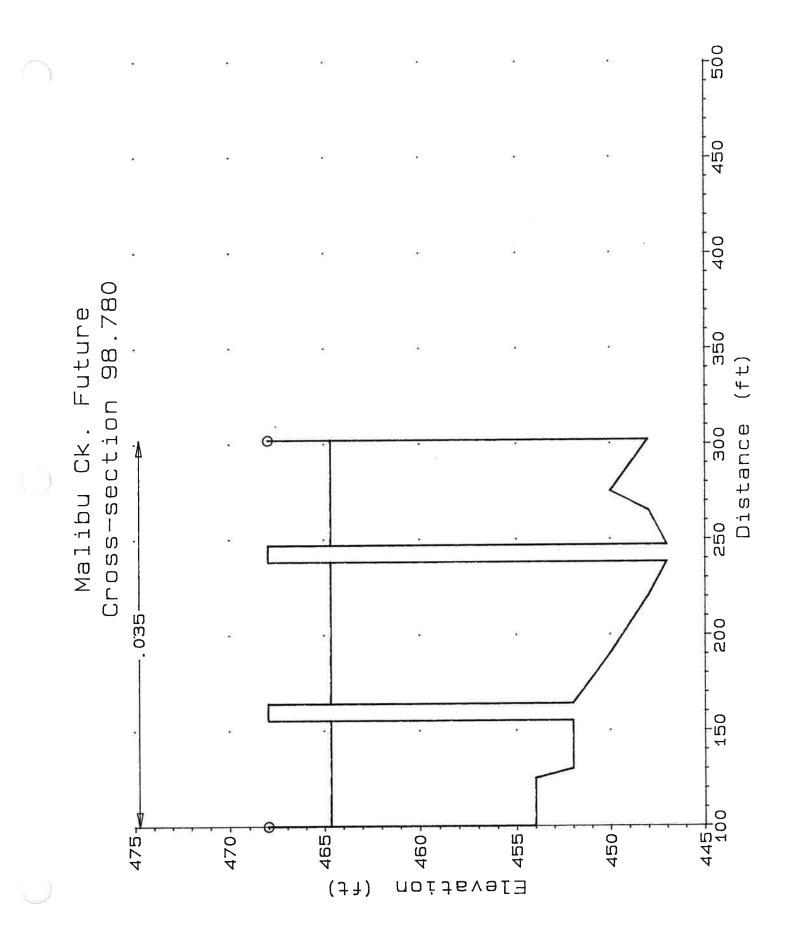


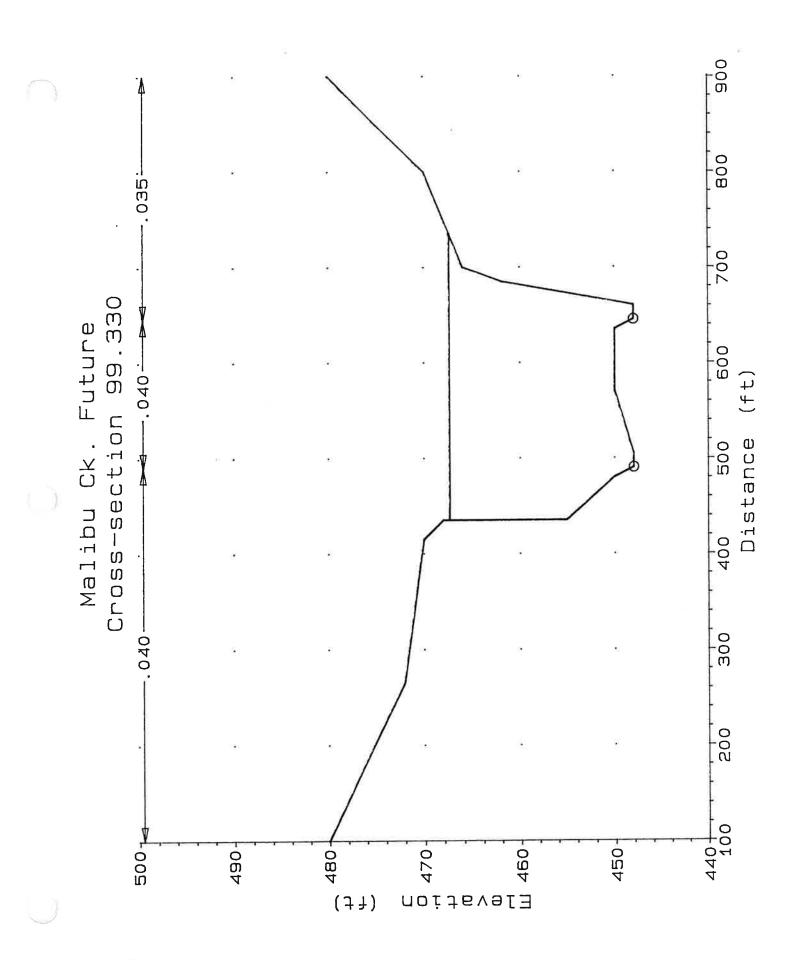


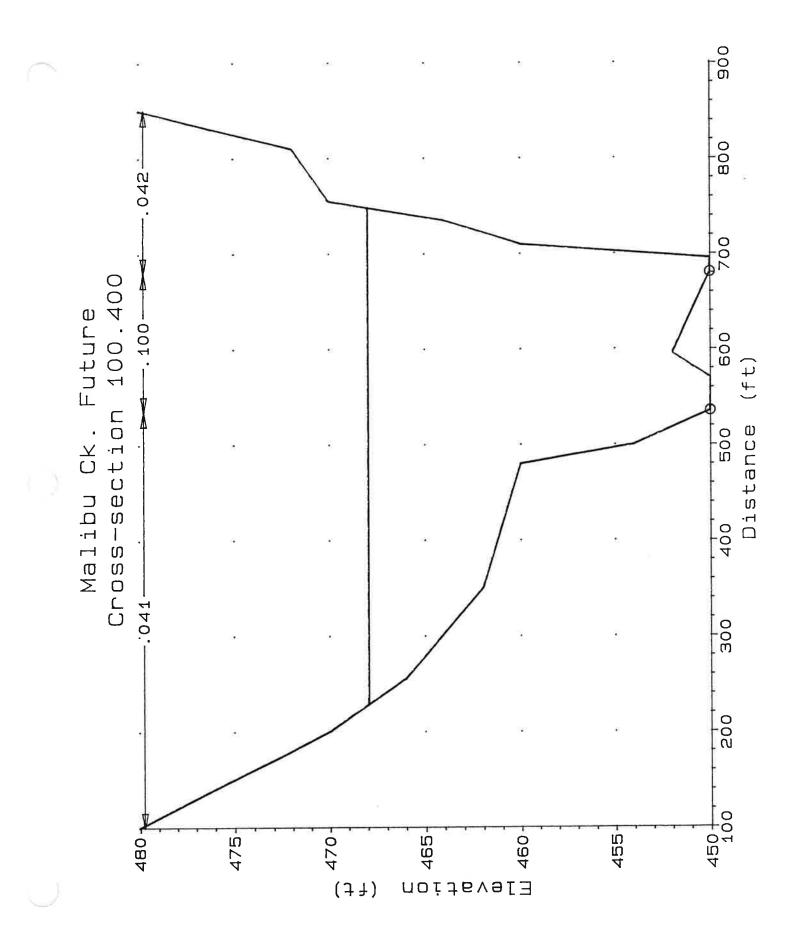


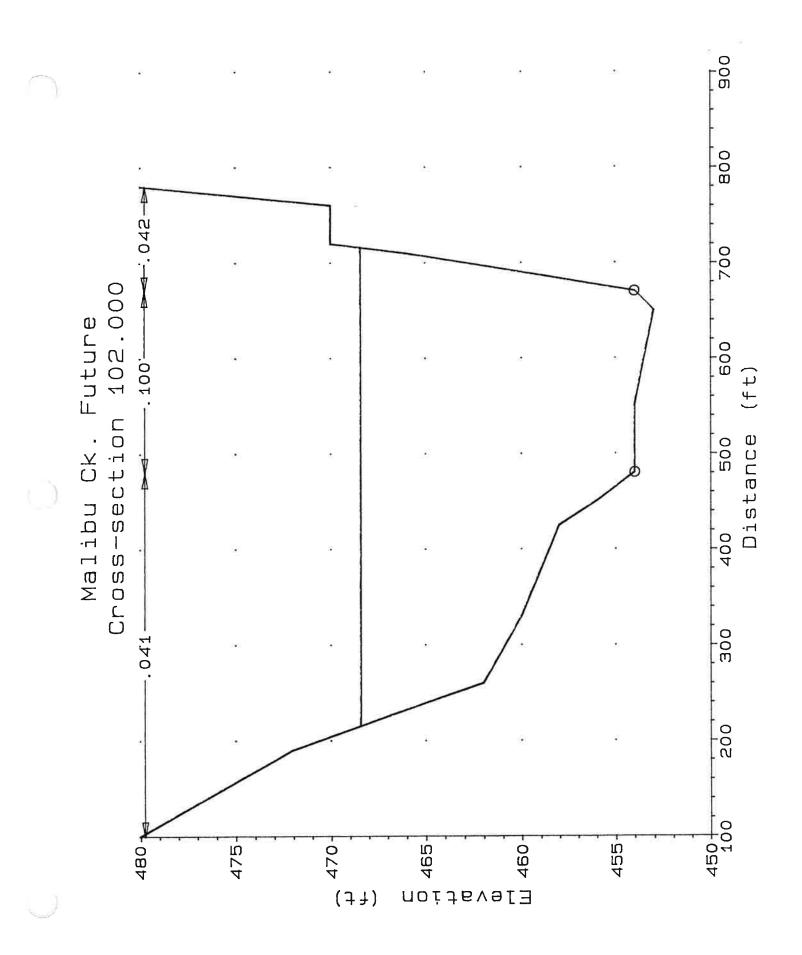


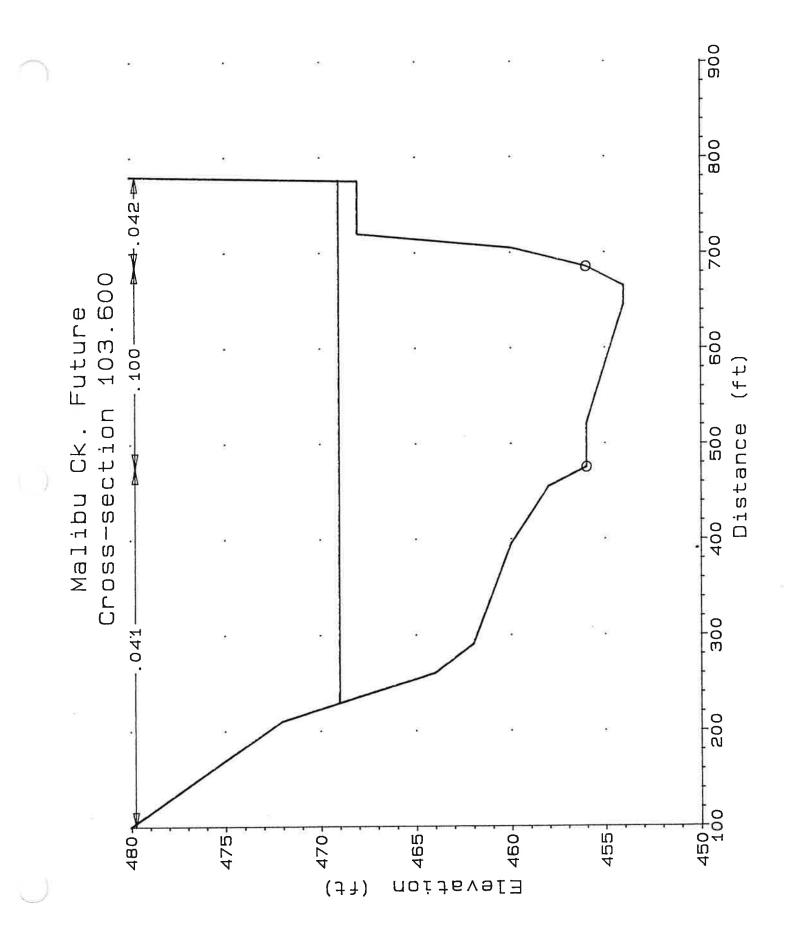


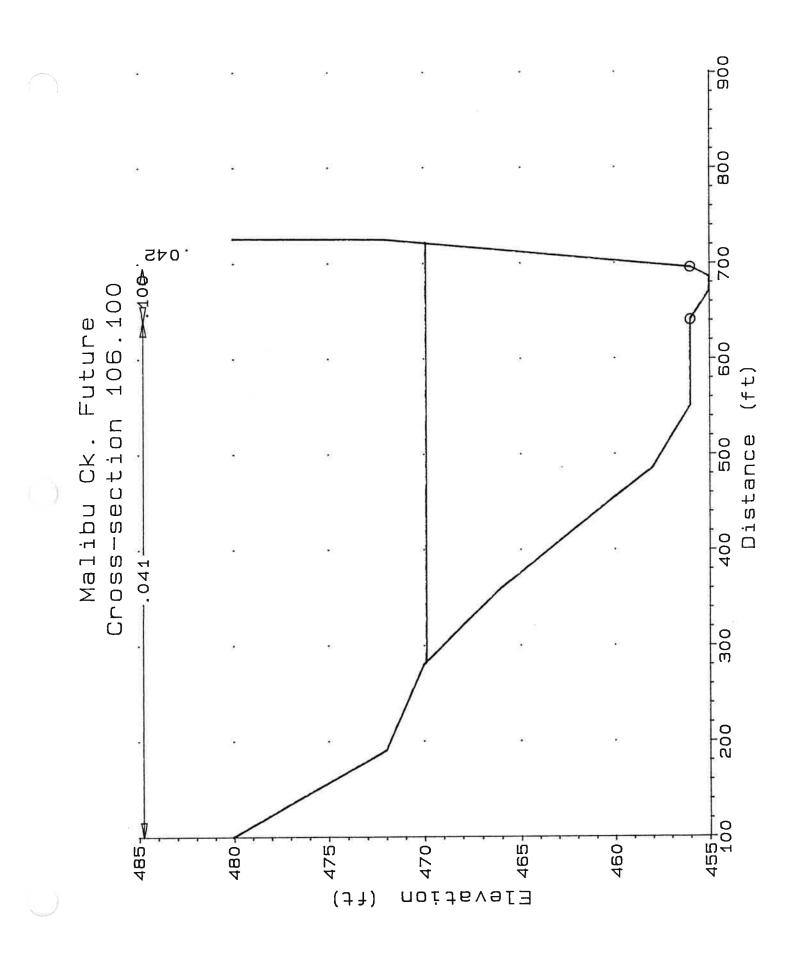


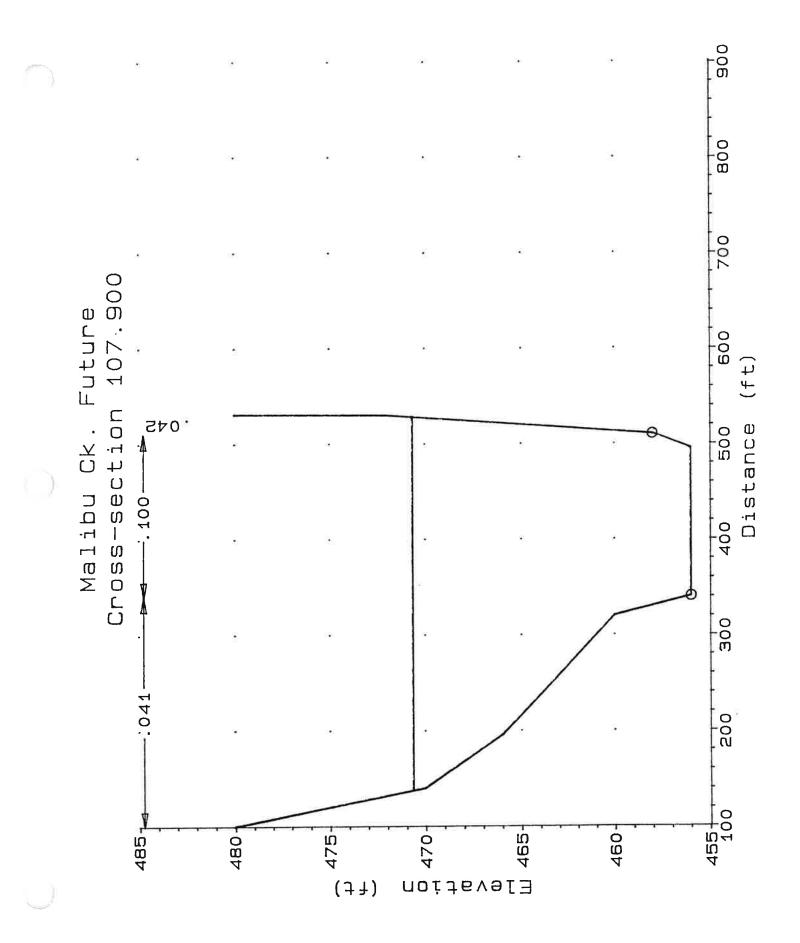


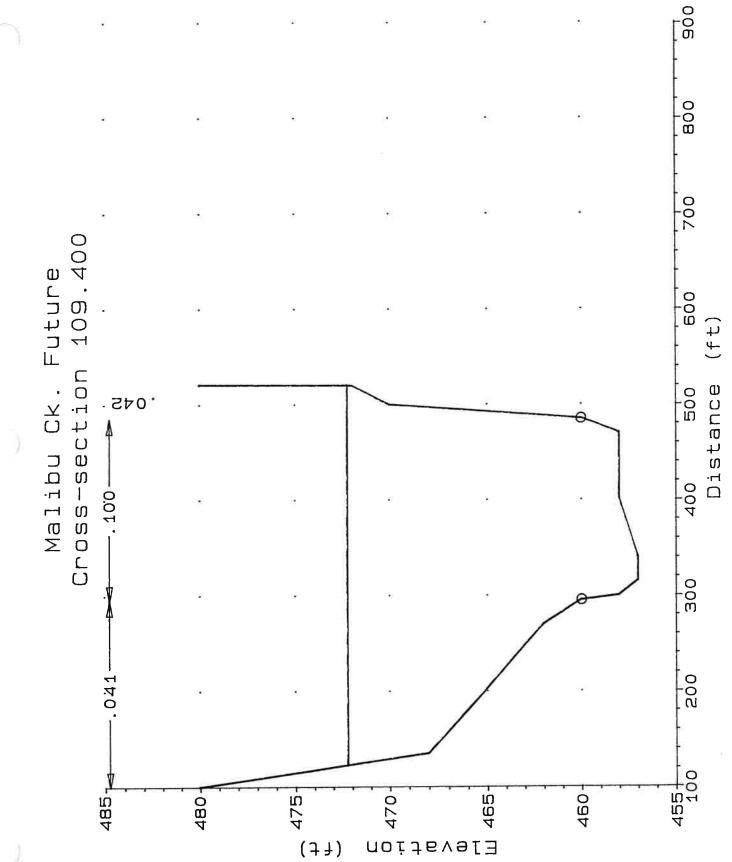


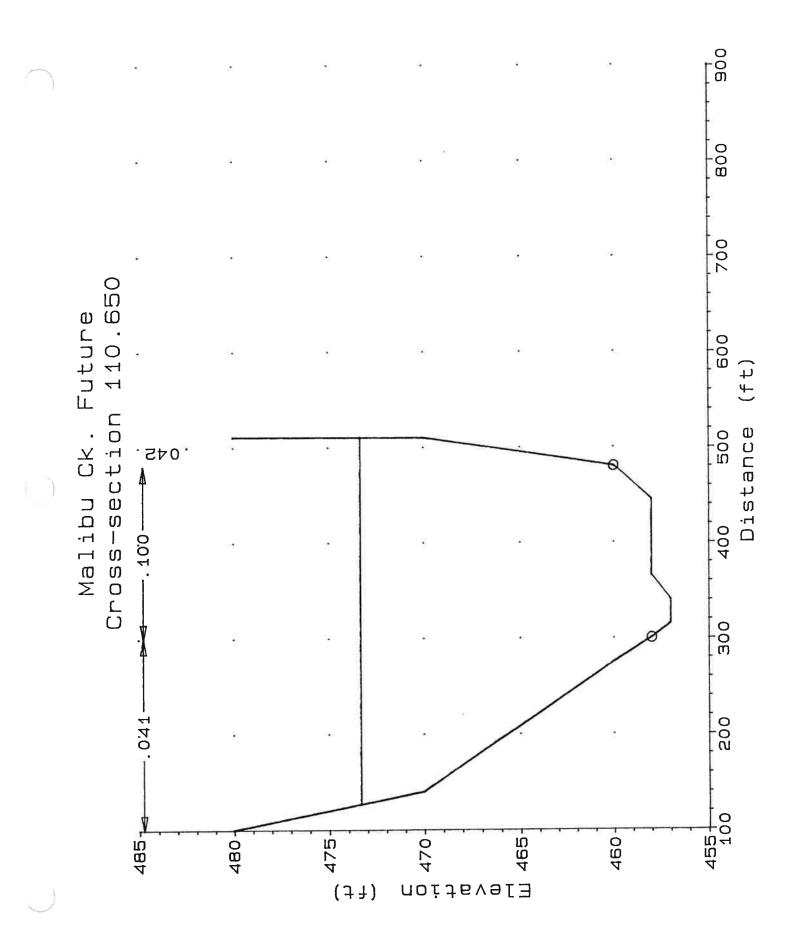


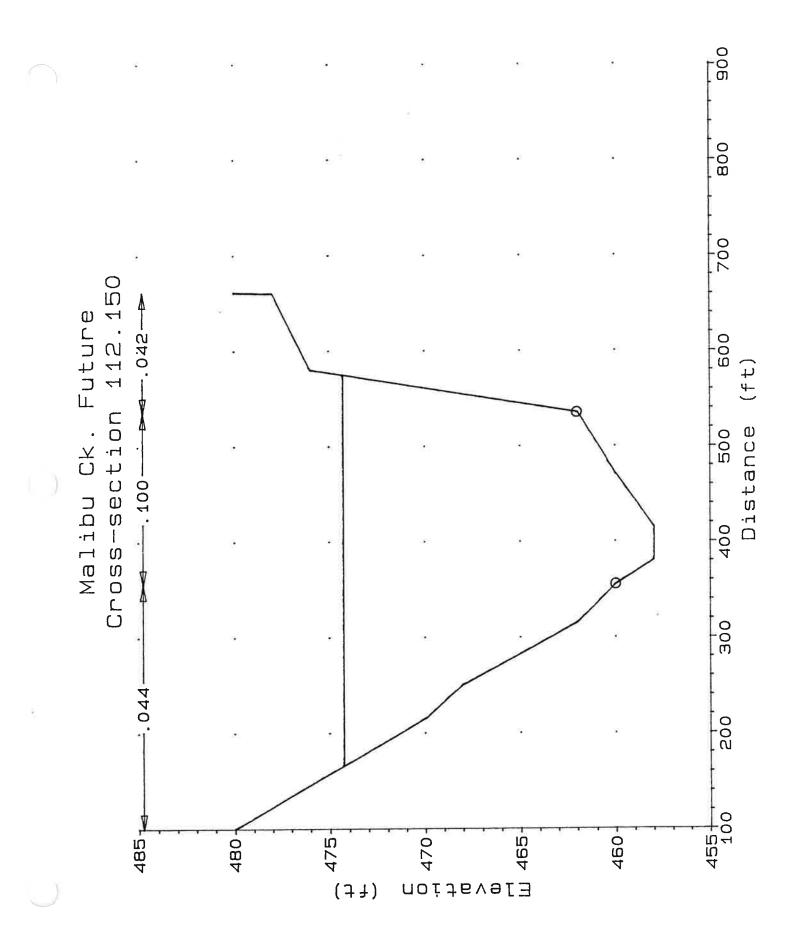


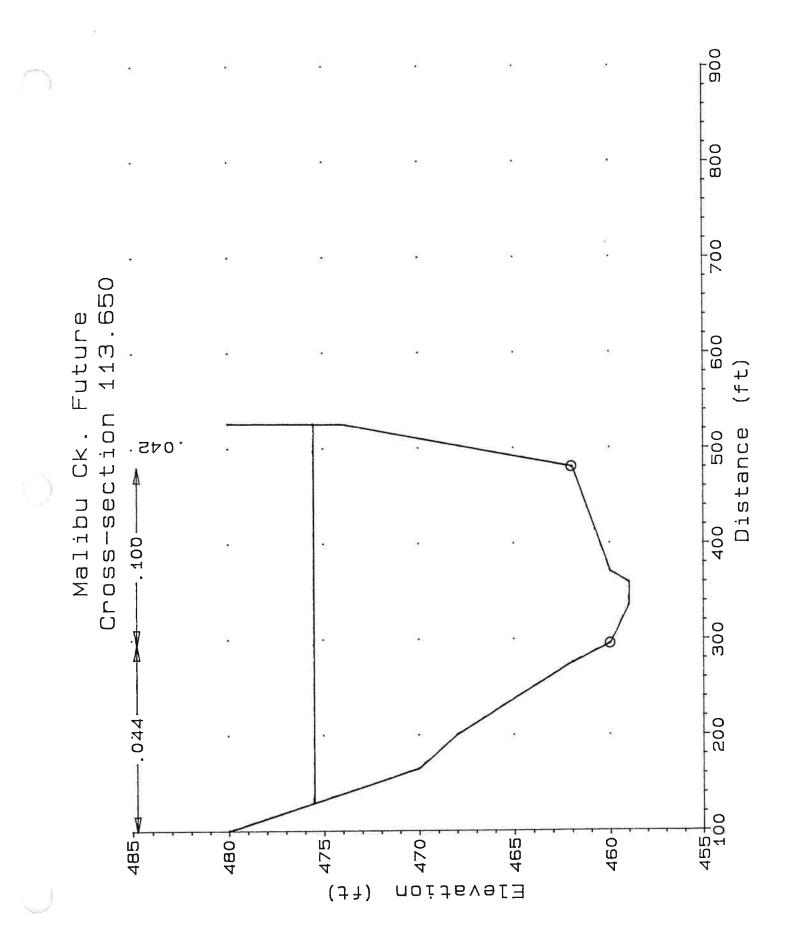


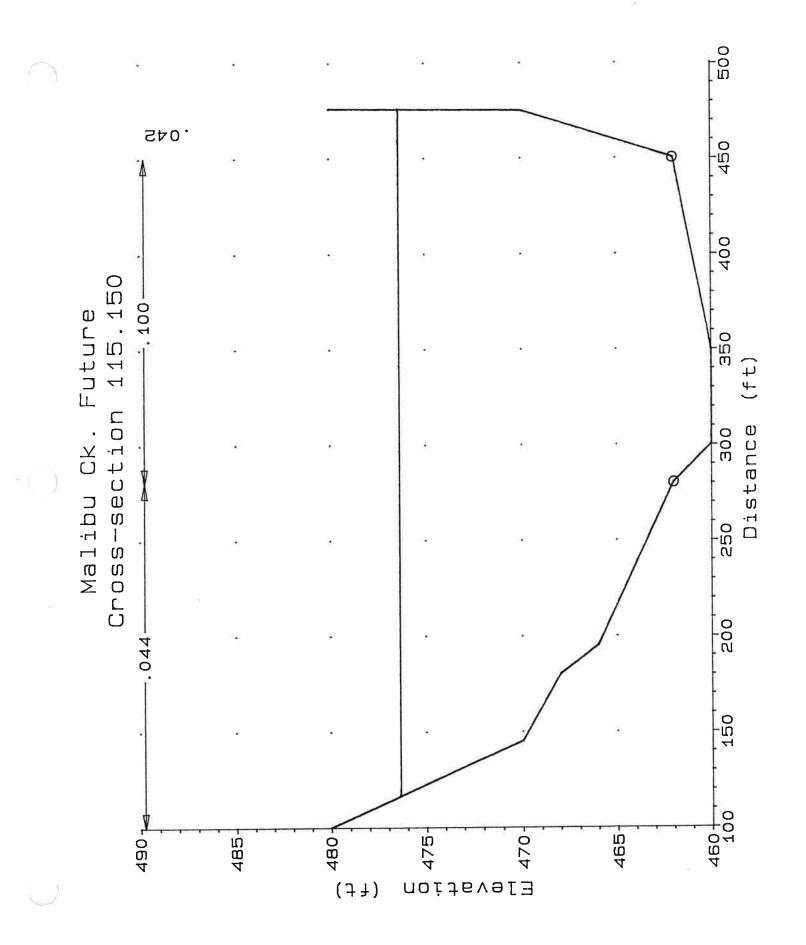


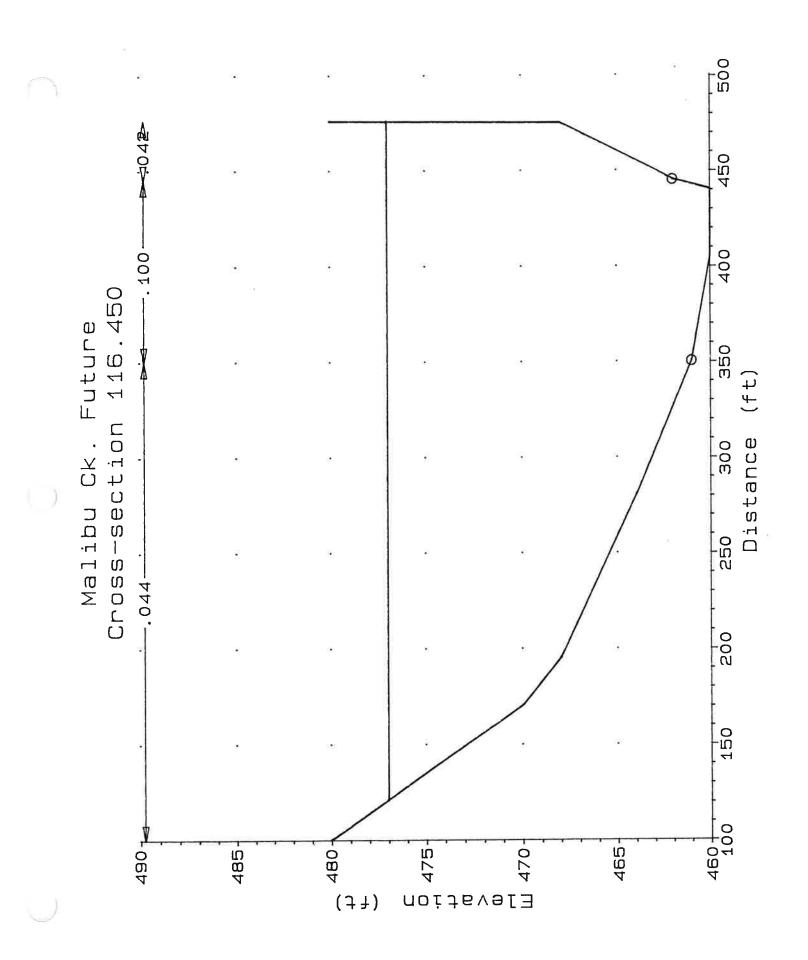


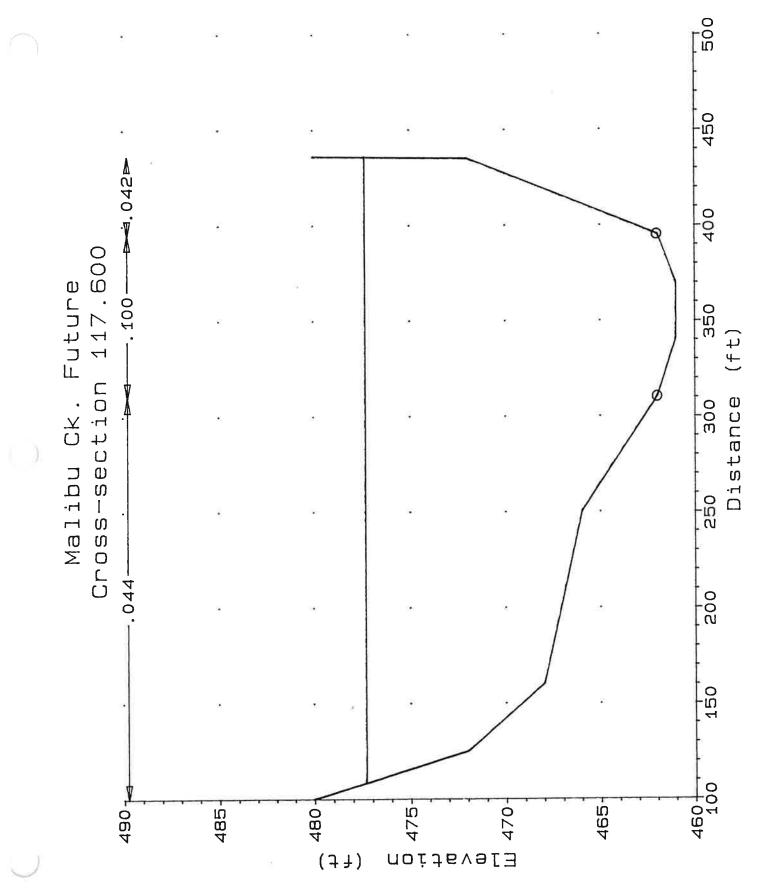


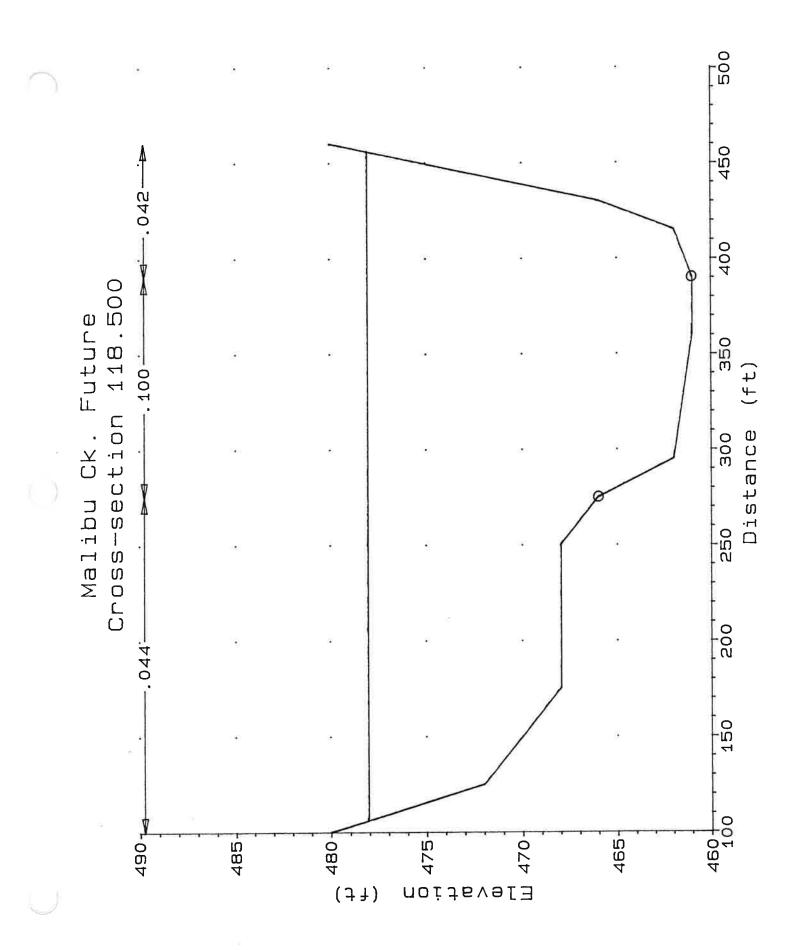


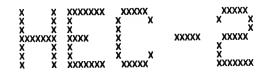











RIVERTECH, INC.

APPENDIX 5

MALIBU CREEK HYDRAULIC ANALYSIS FOR COMPLETE BLOCKAGE OF BRIDGE OPENING

*		FACT DOOTLIFC	
*		FACE PROFILES	
		F SEPTEMBER 1988	* VI
		,02,03 SEPTEMBER 1989	* F
*		CEDTEMOED 1080	* 10
*	8:54:53		
	0:24:22	4/30/90 TIME	* RI

END OF BANNER 1 4/30/90

PAGE 1

8:54:53

THIS RUN EXECUTED 4/30/90 8:54:53

HEC2 RELEASE DATED SEP 88 UPDATED SEPT 1989

ERROR CORR - 01,02,03 MODIFICATION -

T1 MALIBU CREEK ULTIMATE VEGETATION GROWTH SCENARIO. RIVERTECH, FEB., 1990 T2 ALL CROSS SECTIONS LOOKING DOWNSTREAM. **complete blockage at bridge** T3 MALIBU CREEK (u)

Ť3	MAL	IBU CREEK	(u)									
J1	ICHECK	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q	WSEL	FQ		
	0	2	0	0	-1	0	0	0	294	0		
J2	NPROF	IPLOT	PRFVS	XSECV	XSECH	FN	ALLDC	IBW	CHNIM	ITRACE		
	1	0	-1	0	0	0	-1	0	0	0		
NC QT	0.040 1	0.040 41800	0.055		0.1	0.3		<u>,</u>				
X1 GR	0.00 305	4 100	100 289		277 101	0 289	0 276	0 305	277	•		
X1 GR GR	1.50 320 286	8 100 390	260 300 298		390 160 440	100 292 320	200 260 480	150 288	320)	286	350
X1 GR GR	3,00 320 290	9 100 360	230 300 298		360 140 370	150 292 300	160 230 410	150 286 320	290 430	1	286	315
X1 GR GR	7.50 320 292	8 100 240	135 290 302		240 135 285	400 288 320	500 140 440	450 288	155	i	290	170
X1 GR GR	14.50 320 290	9 100 265	210 304 292		360 120 305	750 306 296	650 180 360	700 306 320	210 40)	290	250
X1 GR GR	20.50 330 296	9 100 210	140 300 30 0		260 140 260	550 296 310	650 160 290	600 294 330	184 320		294	200
X1 GR GR	28.00 330 330	6 100 300	300	i)	230 135	700 300	800 175	750 304	23	D	310	250
1	4/30/90	8:54	:53									PAGE
X1 GR GR	35.00 340 310	8 100 230	15(31) 31(260 150 260	700 308 340	750 160 300	700 310	17	0	312	200
X1 GR GR	43.00 360 360	6 100 320	34))	280 150	800 336	800 180	800 336	21	0	338	280
X1 GR	48,50 380	5 100	14 35	5	170 135	550 344	550 145	550 3 44	17	0	380	200
X1 GR GR	54.25 400 400	6 100 270	38	0	230 130	425 370	425 160	425 370	19	0	380	230
X1	59.50	6	5 14	D	245	525	525	525				

2

GR GR	420 420	100 290	400	140	392	160	392	205	400	245	
X1 GR GR	65.20 460 420	7 100 230	145 420 460	230 130 280	570 414	570 145	570 412	165	414	190	
X1 GR GR	77.00 470 470	6 100 370	145 440	285 145	1180 434	1180 220	1180 434	270	440	285	
X1 GR GR GR	86.00 470 450 454	12 100 470 840	310 460 460 470	470 250 490 880	900 450 460	600 310 520	700 440 452	360 570	440 452	425 760	
X1 GR GR	91.00 480 442	10 100 345	215 460 450	370 140 370	500 450 463	450 215 410	500 444 464	250 730	442 480	315 790	
X1 GR GR GR	93.50 480 444 470	12 100 330 745	270 470 444 480	435 130 395 790	290 460 450	160 145 435	250 458 463	210 470	448 463	270 685	
X1 GR GR GR	96.10 480 445 480	11 100 430 700	305 460 445	505 140 460	290 460 456	230 235 505	260 454 460	305 540	450 470	360 650	
X1 GR GR	97.00 480 454 460	13 100 355 530	325 466 450 470	490 135 435 600	110 462 446 480	85 190 465 720	90 460 446	280 485	456 450	325 490	
1	4/30/90	8:54:53								PAGE	3
X1 GR GR GR	97,60 480 454 448	14 100 390 520	355 470 454 462	520 130 415 521	60 462 452 470	60 175 440 680	60 460 446 480	285 485 735	456 446	355 510	
NC X1 GR GR	.020 98.40 480 476	.020 7 100 720	.020 100 472 480	870 185 870	40 471	40 270	40 472	510	474	650	
X1	98.78	0			38	38	38				
NC X1 GR GR GR	0.040 99.33 480 450 448 480	0.035 16 100 480 645 900	0.040 490 472 448 448	645 265 490 660	55 470 448 462	55 415 505 685	55 468 450 466	435 570 700	455 450 470	435.1 635 800	
NC X1 GR GR GR	0.041 100.40 480 454 450 480	0.042 16 100 500 695 850	0.100 535 470 450 460	680 200 535 710	70 466 450 464	120 255 570 735	107 462 452 470	350 595 755	460 450 472	480 680 810	
X1 GR GR GR	102.00 480 456 466	14 100 450 710	480 472 454 470	670 190 480 720	80 462 454 470	160 260 550 760	160 460 453 480	330 650 780	458 454	425 670	
X1 GR GR GR	103.60 480 458 456	15 100 455 685	475 472 456 460	685 210 475 705	130 464 456 468	130 260 520 720	160 462 454 468	290 645 775	460 454 480	395 665 780	
X1 GR GR GR GR	104.95 480 458 456 480	16 100 515 695 865	515 470 456 456	750 280 600 750	135 464 456 462	135 350 640 780	135 462 455 468	380 675 790	460 455 468	490 685 835	
X1 GR GR GR	106.10 480 458 456	13 100 485 695	640 472 456 472	695 190 550 725	115 470 456 480	115 280 640 726	115 466 455	360 670	460 455	455 685	
X1 GR GR	107.90 480 456	10 100 390	340 470 456	510 140 495	160 466 458	190 195 510	180 460 472	320 530	456 480	340 531	
1	4/30/90	8:54:53								PAGE	4
X1 GR GR	109_40 480 458 460	14 100 300 485	295 468 457 470	485 135 315 500	150 466 457 472	150 180 340 520	150 462 458 480	270 400 521	460 458	295 470	
GR X1	400	485	300	480	125	125	125				

-

GR GR GR	457	3	00 15 10	470 457 480	140 340 511	466 458		195 365	460 458	275 445	458 460	300 480		
NC X1 GR GR	480 458	3	42 12 00 80 60	0.100 355 470 458 480	535 215 415 661	150 468 460		150 250 470	150 462 462	315 535	460 476	355 580		
X1 GF GF	113.65 480 459	1	11 00 35 26	295 470 459	480 165 359	150 468 460		150 200 370	150 462 462	275 480	460 474	295 525		
X1 GF GF	115.15	1	10 00 00	280 470 460	450 145 350	150 468 462		150 180 450	150 466 470	195 475	462 480	280 476		
X1 GF GF	2 480	1	10 00 05	350 470 460	445 170 440	130 468 462		130 195 445	130 464 468	280 475	461 480	350 476		
X ⁴ Gl	2 480) 1	10 00 40	310 472 461	395 125 370	115 468 462		115 160 395	115 466 472	250 435	462 480	310 436		
X ⁴ Gi Gi	2 480 2 462	1	11 00 95 60	275 472 461	390 125 360	90 468 461		90 175 390	90 468 462	250 415	466 466	275 430		
1	4/30/90) 8:	54:53									PA	.GE	5
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST				
0 C 3 0		.100 CEHV= 00 CAL DEPTH 12.04 0. 00 0.	= .30 ASSUMED 301.04 41800. 19.75 0.	301.04 0. 00 0.	294.00 0. .000 0	307.10 2117. .055 16	6.06 0. .000 0	.00 0. .000 .00	.00 0. 289.00 176.51	305.00 305.00 100.25 276.75				
र	302 WARNII	NG: CONVI	EYANCE C	HANGE OUTS	IDE OF AC	CEPTABLE F	ANGE, K	RATIO =	3.08					
	1.500 41800. .00 .002402	21.00 10190. 8.68 100.	307.00 23118. 9.40 150.	300.67 8491. 10.31	.00 1174. .040 3	308.38 2461. .055 11	1.38 824. .040 0	.82 11. .000 .00	.47 1. 286.00 317.38	292.00 286.00 138.99 456.37				
0	SECNO 3.00 3.000 41800. .01 .003153 SECNO 7.5	21.20 10725. 10.13 150.	307.20 26894. 10.82 150.	4181.	_00 1059_ _040 _2	308.89 2485. .055 19	1.69 486. .040 0	.42 26. .000 .00	.09 2. 286.00 291.58	292.00 290.00 125.61 417.19				
3	301 HV CH	ANGED MOR	E THAN H	VINS										
3		100		HANGE OUTS				(RATIO = 2.16	.62 .66	290.00				
0	7.500 41800. .02 .008219	19.83 2236. 12.05 400.	307.83 30649. 16.54 450.	305.66 8914. 14.06 500.	.00 186. .040 2	311.72 1853. .055 15	3.89 634. .040 0	60. .000 .00	288.00 221.04	292.00 114.19 335.23				
0 1	4/30/9	8 0	:54:53									P	AGE	6
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG Ach Xnch Idc	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA I ELMIN TOPWID	BANK ELEV Left/Right SSTA Endst				

*SECNO 14.500

-

3301 HV CHANGED MORE THAN HVINS

410

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.60 306.00 296.00 107.97 393.04 .22 9. 290.00 285.07 3.40 14.500 41800. .03 .003207 23.62 6733. 8.38 750. 315.33 71 307.97 00 .62 804. 291 32664 2404 .055 .000 .040 11.02 700. 8.26 0 *SECNO 20.500 3301 HV CHANGED MORE THAN HVINS 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .65 300.00 300.00 120.13 297.35 2.83 161. .000 .00 .00 148. .040 3 3.92 315. .040 .92 314.90 35843. 16.31 600. .66 20.500 41800. .05 .007615 318.82 20.90 311.73 2198. .055 15 4380. 13.91 650. 1577. 10.66 550. 294.00 177.22 0 *SECNO 28.000 3301 HV CHANGED MORE THAN HVINS 300.00 304.00 111.13 276.15 1834. .055 15 4.49 406. .040 5.96 205. .000 6303. 15.53 800. .00 244. .040 .17 320.46 32273. 17.60 20.46 3224. 13.20 28,000 317 324 15 41800 300.00 .00 .008212 700. 750. 0 *SECNO 35.000 3301 HV CHANGED MORE THAN HVINS .33 17. 308.00 160.39 310.00 310.00 122.00 282.40 7.10
243
.000 35.000 41800. .07 .012612 18.79 3659. 15.56 700. .00 332 .37 5.58 325.59 326.79 35346. 19.55 700. 2795. 14.86 750. 235. 1808. 188. 15 .00 0 4/30/90 8:54:53 WSELK ALOB XNL ITRIAL CWSEL QCH VCH CRIWS QROB EG ACH XNCH IDC HV AROB XNR HI. OLOSS BANK ELEV DEPTH SECNO TWA LEFT/RIGHT ELMIN SSTA VOL WTN QLOB VLOB Q VROB XLOBR TIME ICONT CORAR TOPWID ENDST XLCH SLOPE XLOBL *SECNO 43.000 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 43.000 15.14 351.14 41800, 2209. 37190. .08 14.25 20.24 .016460 800. 800. 340.00 338.00 122.16 303.88 6.03 11.48 284. .000 351.14 2401. 15.31 800. .00 357.17 żi 1838 155. 336.00 .055 15 . 00 0 *SECNO 48.500 3301 HV CHANGED MORE THAN HVINS 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 48.500 29.69 373.69 41800. 14350. 20822. 002 24.15 28.05 344.00 344.00 107.36 194.74 .00 594. .040 383.69 742. .055 17 10.00 367. .040 0 7.59 308. .000 1.19 373.69 6629. 18.05 550. .00 344 28.05 87 .00 .38 .011725 550. 0 *SECNO 54.250 3301 HV CHANGED MORE THAN HVINS 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 54.250 21.05 391.05 41800. 1167. 39001. .09 12.75 22.23 .015409 425. 425. 5.69 326. 380.00 .00 92. .040 122. .27 391.05 1632. 13.38 398.38 1755. 370.00 113.43 252.09 00 425 *SECNO 59.500 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 59.500 19.15 411.15 41800. 1663. 38239. 13.37 21.59 0 400.00 400.00 117.69 270.09 6.86 140. .040 8.03 .05 .00 124. .040 0 418.02 411.15 350. 1898. 13.56 525. 1771. .055 11 392.00 152.40 13.3 .00 .015200 525 0 4/30/90 8:54:53 OLOSS BANK ELEV TWA LEFT/RIGHT ELMIN SSTA TOPUID ENDST CRIWS QROB VROB XLOBR HV AROB XNR BANK ELEV **USELK** EĜ HL VOL CWSEL QCH SECNO DEPTH ALOB ĀČH ۵ OLOB WTN TIME VLOB VCH XNCH CORAR ITRIAL IDC I CONT

PAGE 7

8 PAGE

*SECNO 65.200

SLOPE

ų.

3301 HV CHANGED MORE THAN HVINS

XI CH

XLOBL

7185 MINIMU 3720 CRITIC. 65.200 41800. .11 .014950 0 *SECNO 77.0	AL DEPTH 20.57 6948. 23.73 570.	C ENERGY ASSUMED 432.57 33556. 22.32 570.	432.57 1296. 13.12 570.	.00 293. .040 0	440.32 1503. .055 8	7.75 99. _040 _0	8.59 376. .000 .00	.27 27. 412.00 125.14	414.00 420.00 120.57 245.71
3301 HV CHA		THAN HVI	NS						
77.000 41800. .12 .011550	17.32 1080. 11.22 1180.	451.32 38501. 17.86 1180.	449.82 2218. 12.20 1180.	.00 96. .040 2	456.06 2156. .055 15	4.73 182. .040 0	15.44 434. .000 .00	.30 31. 434.00 189.09	440.00 440.00 128.01 317.10
*SECNO 86.0	00								
3265 DIVIDE	D FLOW								
3301 HV CHA	NGED MORE	THAN HVI	NS						
3302 WARNIN	IG: CONVE	YANCE CHA	NGE OUTSI	DE OF ACC	EPTABLE R	ANGE, KR	ATIO = 1	.87	
86.000 41800. .15 .003298 0	19.03 1415. 5.78 900.	459.03 25180. 9.80 700.	456.17 15204. 7.28 600.	245. .040 3	460.25 2571. .055 10	1.21 2088. .040 0	3.84 491. .000 .00	.35 37. 440.00 558.85	450.00 450.00 255.79 852.59
*SECNO 91.0			Ne						
3301 HV CHA	NGED MORE	: INAN NYI							
4/30/90) 8:	:54:53							
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST
3302 WARNIN	IG: CONVI	EYANCE CH	ANGE OUTS	DE OF ACC	EPTABLE F	RANGE, KR	ATIO =	.65	
91.000	18.00	460.00	457.52	.00	463.24	3.24	2.38	<u>.</u> 61	450.00
41800. 16 007887	3602. 9.60 500.	36762. 15.00 500.	1437. 9.33 450.	375. .040 3	2451. .055 16	154. .040 0	.000	41. 442.00 260.79	450.00 139.99 400.78
0 *SECNO 93.		1986							
3301 HV CH/	ANGED MOR	E THAN HV	INS						
				IDE OF AC	EPTABLE I	RANGE, KI	= 01143	1.44	
3302 WARNII 93.500 41800.	NG: CONV 18.95 7749. 9.01		ANGE OUTS 457.72 1720. 7.62	.00 860. .040	464.72 2886. .055	1.78 226. .040	1.34	.15 43. 444.00	448.00 450.00 140.58
3302 WARNII 93.500 41800. .16 .003804	NG: CONV 18.95 7749.	EYANCE CH 462.95 32331.	ANGE OUTS 457.72 1720.	.00 860.	464.72 2886.	1.78	1.34	.15 43.	450.00
3302 WARNII 93.500 41800. 16 .003804 0 *SECNO 96. 96.100 41800. .17 .004215	NG: CONV 18.95 7749. 9.01 290.	EYANCE CH 462.95 32331. 11.20	ANGE OUTS 457.72 1720. 7.62	.00 860. .040	464.72 2886. .055	1.78 226. .040	1.34	.15 43. 444.00	450.00 140.58
3302 WARN II 93.500 41800. 16 .003804 0 *SECNO 96. 96.100 41800. .17	NG: CONV 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290.	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83	.00 860. .040 3 .00 925. .040	464.72 2886. .055 15 465.80 3037. .055	1.78 226. .040 0 1.58 316. .040	1.34 555. .000 .00 1.06 581. .000	.15 43. 444.00 329.27 .02 46. 445.00	450.00 140.58 469.85 454.00 456.00 131.55
3302 WARNII 93.500 41800. .003804 0 *SECNO 96. 96.100 41800. .17 .004215	NG: CONV 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260.	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230.	.00 860. .040 3 .00 925. .040	464.72 2886. .055 15 465.80 3037. .055	1.78 226. .040 0 1.58 316. .040	1.34 555. .000 .00 1.06 581. .000	.15 43. 444.00 329.27 .02 46. 445.00	450.00 140.58 469.85 454.00 456.00 131.55
3302 WARNII 93.500 41800. .16 .003804 0 *SECNO 96. 96.100 41800. .17 .004215 0 *SECNO 97.	NG: CONV 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000 ANGED MOR	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260. E THAN HV	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230.	.00 860. .040 3 .00 925. .040 2	464.72 2886. .055 15 465.80 3037. .055 15	1.78 226. .040 0 1.58 316. .040 0	1.34 555. .000 .00 1.06 581. .000 .00	.15 43. 444.00 329.27 .02 46. 445.00	450.00 140.58 469.85 454.00 456.00 131.55
3302 WARNII 93.500 41800. 0.003804 0 *SECN0 96. 96.100 41800. .004215 0 *SECN0 97. 3301 HV CH	NG: CONV 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000 ANGED MOR	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260. E THAN HV	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230.	.00 860. .040 3 .00 925. .040 2	464.72 2886. .055 15 465.80 3037. .055 15	1.78 226. .040 0 1.58 316. .040 0	1.34 555. .000 .00 1.06 581. .000 .00	.15 43. 444.00 329.27 .02 46. 445.00 454.91	450_00 140_58 469_85 454_00 456_00 131_55 586_47
3302 WARNII 93.500 41800. .16 .003804 *SECNO 96. 96.100 41800. 41800. *SECNO 97. 3301 HV CH 3302 WARNI 97.000 41800. .17	NG: CONV. 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000 ANGED MOR NG: CONV 17.70 4925. 9.47 110.	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260. E THAN HV EYANCE CH 463.70 31165. 14.83	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230. TINS ANGE OUTS 463.02 5710. 14.41	.00 860. .040 3 .00 925. .040 2 IDE OF AC .00 520. .040	464.72 2886. .055 15 465.80 3037. .055 15 CEPTABLE 466.85 2101. .055	1.78 226. .040 0 1.58 316. .040 0 RANGE, K 3.15 396. .040	1.34 555. .000 .00 1.06 581. .000 .00 RATIO = .58 588. .000	.15 43. 444.00 329.27 .02 46. 445.00 454.91 .64 .64 .47 466.00	450.00 140.58 469.85 454.00 456.00 131.55 586.47 456.00 450.00 166.58
3302 WARNII 93.500 41800. .16 .003804 *SECNO 96. 96.100 41800. 41800. 41800. 3301 HV CH 3302 WARNI 97.000 41800. .17 .010286 0	NG: CONV. 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000 ANGED MOR NG: CONV 17.70 4925. 9.47 110.	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260. E THAN HV EYANCE CH 463.70 31165. 14.83 90. 3:54:53	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230. TINS ANGE OUTS 463.02 5710. 14.41 85.	.00 860. .040 925. .040 2 IDE OF AC .00 520. .040 3	464.72 2886. .055 15 465.80 3037. .055 15 CEPTABLE 466.85 2101. .055 15	1.78 226. .040 0 1.58 316. .040 0 RANGE, K 3.15 396. .040 0	1.34 555. .000 .00 1.06 581. .000 .00 .00 RATIO = .58 588. .000 .00	.15 43. 444.00 329.27 .02 46. 445.00 454.91 .64 .47 .46. .46 .46.00 389.34	450.00 140.58 469.85 454.00 456.00 131.55 586.47 456.00 450.00 166.58 555.92
3302 WARNII 93.500 41800. .16 .003804 *SECNO 96. 96.100 41800. 41800. 41800. 3301 HV CH 3302 WARNI 97.000 41800. .17 .010286 0	NG: CONV. 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000 ANGED MOR NG: CONV 17.70 4925. 9.47 110.	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260. E THAN HV EYANCE CH 463.70 31165. 14.83 90.	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230. TINS ANGE OUTS 463.02 5710. 14.41	.00 860. .040 3 .00 925. .040 2 IDE OF AC .00 520. .040	464.72 2886. .055 15 465.80 3037. .055 15 CEPTABLE 466.85 2101. .055	1.78 226. .040 0 1.58 316. .040 0 RANGE, K 3.15 396. .040	1.34 555. .000 .00 1.06 581. .000 .00 RATIO = .58 588. .000	.15 43. 329.27 .02 46. 455.00 454.91 .64 .64 .47 46. 389.34	450.00 140.58 469.85 454.00 456.00 131.55 586.47 456.00 450.00 166.58 555.92 BANK ELE LEFT/RIGHT SSTA
3302 WARNII 93.500 41800. 16 .003804 *SECNO 96. 96.100 41800. 17 .004215 *SECNO 97. 3301 HV CH 3302 WARNI 97.000 41800. 1 .010286 0 1 4/30/9 SECNO 9 TIME	NG: CONV. 18.95 7749. 9.01 290. 100 19.22 7142. 7.72 290. 000 ANGED MOR NG: CONV 17.70 4925. 9.47 110. 100 8 00 8 00 8 00 100 100 10	EYANCE CH 462.95 32331. 11.20 250. 464.22 32499. 10.70 260. E THAN HV EYANCE CH 463.70 31165. 14.83 90. 3:54:53 CWSEL QCH VCH	ANGE OUTS 457.72 1720. 7.62 160. 460.91 2159. 6.83 230. TINS ANGE OUTS 463.02 5710. 14.41 85. CRIWS QROB VROB	.00 860. .040 3 .00 925. .040 2 IDE OF AC .00 520. .040 3 WSELK ALOB XNL	464.72 2886. .055 15 465.80 3037. .055 15 466.80 2037. .055 15 2101. .055 15 2101. .055 15	1.78 226. .040 0 1.58 316. .040 0 RANGE, K 3.15 396. .040 0 HV AROB XNR	1.34 555. .000 .00 1.06 581. .000 .00 .00 RATIO = .58 588. .000 .00	.15 43. 444.00 329.27 .02 46. 445.00 454.91 .64 .64 .47 46. 0 389.34	450.00 140.58 469.85 454.00 456.00 131.55 586.47 456.00 450.00 166.58 555.92 BANK ELE LEFT/RIGHT

dame.

PAGE 9

PAGE 10

3	*CECNO 08 (00)							
	*SECNO 98.400 3301 HV CHANGED MORE	THAN HVINS						
2								
	7185 MINIMUM SPECIFIC 3720 CRITICAL DEPTH / 98.400 7.02 41800. 0. .17 .00 .003492 40.	C ENERGY ASSUMED 478.02 478.02 41800. 0. 12.65 .00 40. 40.	.00 0. .000	480.51 3303. .020 18	2.49 0. .000 0	.22 596. .000 .00	.06 47. 471.00 674.78	480.00 480.00 121.02 795.81
	0 *SECNO 98.780							
	3301 NV CHANGED MORE	THAN HVINS						
	98.780 7.92	478.92 478.03	.00	480.68	1.76	.10	.07	480.00
	41800. 0. .17 .00 .002129 38.	41800. 0. 10.64 .00 38. 38.	.000 6	3928. .020 5	.000	599. .000 .00	48. 471.00 717.95	480.00 111.49 829.44
	*SECNO 99.330 3280 CROSS SECTION	99.33 EXTENDED	.64	FEET				
	3301 HV CHANGED MORE							
	3302 WARNING: CONVE	YANCE CHANGE OUTSI	DE OF ACCI	EPTABLE R	ANGE, KR	ATIO = 3		
	99.330 32.64 41800. 10127. .18 2.51 .000143 55.	480.64 459.87 21375. 10298. 4.40 3.21 55. 55.	.00 4027. .040 2	480.86 4855. .040 14	.22 3209. .035 0	.02 609. .000 .00	.15 49. 448.00 800.00	448.00 448.00 100.00 900.00
	1	54:53						
	SECNO DEPTH Q QLOB TIME VLOB SLOPE XLOBL	CWSEL CRIWS QCH QROB VCH VROB XLCH XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LE ELMIN TOPWID	BANK ELEV FT/RIGHT SSTA ENDST
	*SECNO 100.400 3280 CROSS SECTION	100.40 EXTENDED	.71	FEET				
	100.400 30.71 41800. 25040. 19 3.63 .000208 70.	480.71 463.55 8982. 7779. 2.07 3.37 107. 120.	.00 6898. .041 2	480.88 4343. .100 18	.17 2310. .042 0	.02 636. .000 .00	.00 51. 450.00 750.00	450.00 450.00 100.00 850.00
	0 *SECNO 102.000 3280 CROSS SECTION	102.00 EXTENDED	.71	FEET				
	102.000 27.71 41800. 25664. 20 4.15 .000255 80.	480.71 463.33 10972. 5165. 2.14 3.45 160. 160.	.00 6189. .041 2	480.91 5135. .100 22	.21 1498. .042 0	.03 673. .000 .00	.01 53. 453.00 680.00	454.00 454.00 100.00 780.00
	0 *SECNO 103.600 3280 CROSS SECTION	103.60 EXTENDED	.74	FEET				
	103.600 26.74 41800. 24011. .21 4.33 .000308 130.	480.74 464.35 12198. 5591. 2.27 3.88 160. 130.	.00 5543. .041 0	480.96 5381. .100 22	.22 1440. .042 0	.04 714. .000 .00	.00 55. 454.00 680.00	456.00 456.00 100.00 780.00
	0 *SECNO 104.950 3280 CROSS SECTION	104.95 EXTENDED	.80) FEET				
	104.950 25.80 41800. 21961. .22 4.17 .000343 135.	480.80 465.04 13435. 6404. 2.33 4.02 135. 135.	.00 5265. .041 2	481.00 5774. .100 22	.21 1591. .042 0	.04 753. .000 .00	.00 57. 455.00 765.00	458.00 456.00 100.00 865.00
	0 *SECNO 106.100 3280 CROSS SECTION	106.10 EXTENDED	.78	B FEET				
	106.100 25.78 41800. 36865. .22 4.36 .000296 115.	480.78 466.53 3086. 1849. 2.21 3.64 115. 115.	.00 8454. .041 2	481.06 1398. .100 14	.28 508. .042 0	.04 783. .000 .00	.02 59. 455.00 626.00	456.00 456.00 100.00 726.00
	0 1 4/30/90 8	:54:53						
	SECNO DEPTH Q QLOB TIME VLOB SLOPE XLOBL	CWSEL CRIWS QCH QROB VCH VROB XLCH XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA L ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST
	*SECNO 107.900 3280 CROSS SECTION	107.90 EXTENDED	.6	9 FEET				

farr

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .59

PAGE 11

PAGE 12

.08 819. .000 .08 456.00 .00 3590. .041 481.21 4182. .100 53 318. .042 107.900 41800. .23 24.69 24573 6.85 480.69 61. 456.00 431.00 458.00 100.00 1792. 5.63 15434 3.69 180. .00 531.00 .000863 160. 0 *SECNO 109.400 3280 CROSS SECTION .77 FEET 109.40 EXTENDED 460.00 460.00 100.00 521.00 468.26 2616. 5.99 150. .15 846. .000 .00 2861. .041 .60 437. .042 23.78 21652. 7.57 150. 480.78 17532. 4.01 150. 481.38 .02 109.400 62. 457.00 421.00 4369. 41800. ò 18 . 00 0 *SECNO 110.650 3280 CROSS SECTION .91 FEET 110.65 EXTENDED .01 63. 457.00 411.00 458.00 460.00 100.00 511.00 468.80 3378. 6.99 125. .63 483. .042 .14 868. .000 110.650 41800. _24 .001071 .00 2926. .041 23.90 22191. 7.58 125. 480.90 16231. 3.93 125. 481.53 4133. 00 0 *SECNO 112.150 3280 CROSS SECTION 112.15 EXTENDED 1.18 FEET .01 65. 458.00 561.00 460.00 462.00 100.00 661.00 112.150 41800. .25 .001288 .53 885. .042 .18 894. .000 23.18 20985. 7.01 150. 481.18 16140. 4.14 150. 481.71 470.28 00 2996. 4676. 5.29 3897 .100 . 60 0 *SECNO 113.650 3280 CROSS SECTION 1.28 FEET 113.65 EXTENDED 460.00 462.00 100.00 526.00 .22 919. .000 470.82 4650. 7.73 150. .70 602. .042 .05 22.28 19603. 7.95 150. 481.28 17547. 4.53 150. 481.98 113.650 41800. .26 .001607 2464 .044 2 .00 3876. .100 67. 459.00 426.00 .00 0 4/30/90 8:54:53 OLOSS BANK ELEY TWA LEFT/RIGHT ELMIN SSTA WSELK ALOB XNL ITRIAL BANK ELEV HL VOL EG ACH XNCH IDC HV AROB CWSEL CRIWS DEPTH SECNO QCH VCH QROB VROB TIME XNR I CONT WTN CORAR TOPWID ENDST SLOPE XLOBL XLCH **XLOBR** *SECNO 115.150 3280 CROSS SECTION 115.15 EXTENDED 1.43 FEET 462.00 462.00 100.00 476.00 21.43 21194. 8.75 150. 482.28 3522. .100 .26 942. .000 .00 481.43 17061. 4.84 150. 71.34 3545. 9.04 150. 00 115.150 2422. 392. 68 41800 460.00 .001868 ۵ *SECNO 116.450 3280 CROSS SECTION 1.63 FEET 116.45 EXTENDED 34490 461.00 462.00 100.00 476.00 .23 961. .000 .01 69. 116.450 41800. .27 .001626 482.52 481.63 9281. .45 89 21.63 506. 28841. 8.37 130. 3678. 7.26 130. 202 044 460.00 4.59 .100 00 O. *SECNO 117.600 3280 CROSS SECTION 1.65 FEET 117.60 EXTENDED 462.00 462.00 100.00 436.00 481.65 8818. 5.10 115. .21 975. .000 .00 20.65 27364. 9.35 115. 08 00 482.81 117.600 473.72 1.16 70. 2927. 1728. 592. 5618. 9.49 115. 41800. 461.00 .002126 0 *SECNO 118.500 3280 CROSS SECTION 118.50 EXTENDED 1.91 FEET 466.00 461.00 100.00 460.00 483.02 2312. 20 118.500 41800. .91 00 20.91 481 1046 986. 18808. 8.71 90. 11930. 5.16 90. 1062 10.57 90 2159 461.00 360.00 .100 .002216 14 0 4/30/90 8:54:53 THIS RUN EXECUTED 4/30/90 *********** HEC2 RELEASE DATED SEP 88 UPDATED SEPT 1989

8:55: 6

14

PAGE

PAGE 13

EPPOR COPP - 01 02 03

ERROR CORR - 01,02,03 MCDIFICATION -

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

MALIBU CREEK (u)

Ĩ

-

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	. 01K
*	.000	.00	.00	.00	289.00	41800.00	301.04	301.04	307.10	228.56	19.75	2116.66	2764.90
*	1.500	150.00	.00	.00	286.00	41800.00	307.00	300.67	308.38	24.02	9.40	4458.41	8528.78
	3.000	150.00	.00	.00	286.00	41800.00	307.20	301.89	308.89	31.53	10.82	4030.00	7443.97
*	7.500	450.00	.00	.00	288.00	41800.00	307.83	305.66	311.72	82.19	16.54	2672.03	4610.57
*	14.500	700.00	.00	.00	290.00	41800.00	313.62	307.97	315.33	32.07	11.02	4058.32	7381.19
*	20.500	600.00	.00	-00	294.00	41800.00	314.90	311.73	318.82	76.15	16.31	2660.95	4789.98
	28.000	750.00	.00	.00	300.00	41800.00	320.46	317.64	324.95	82.12	17.60	2483.71	4612.70
	35.000	700.00	.00	.00	308.00	41800.00	326.79	325.59	332.37	126.12	19.55	2231.04	3722.09
*	43.000	800.00	.00	.00	336.00	41800.00	351.14	351.14	357.17	164.60	20.24	2149.60	3258.07
*	48.500	550.00	.00	.00	344.00	41800.00	373.69	373.69	383.69	117.25	28.05	1703.69	3860.26
*	54.250	425.00	.00	.00	370.00	41800.00	391.05	391.05	398.38	154.09	22.23	1968.17	3367.38
*	59.500	525.00	.00	.00	392.00	41800.00	411.15	411.15	418.02	152.00	21.59	2035.35	3390.46
*	65.200	570.00	.00	.00	412.00	41800.00	432.57	432.57	440.32	149.50	22.32	1895.03	3418.64
	77.000	1180.00	.00	.00	434.00	41800.00	451.32	449.82	456.06	115.50	17.86	2434.19	3889.46
*	86.000	700.00	.00	.00	440.00	41800.00	459.03	456.17	460.25	32.98	9.80	4903.32	
*	91.000	500.00	.00	.00	442.00	41800.00	460.00	457.52	463.24	78.87	15.00		4706.88
*	93.500	250.00	.00	.00	444.00	41800.00	462.95	457.72	464.72	38.04	11.20	3971.11	6777.20
1	4/30/90	8:54:5	3									PAGE	15
	SECNO	XLCH	ELTRD	ELLC	ELMIN	٩	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
	96.100	260.00	.00	.00	445.00	41800.00	464.22	460.91	465.80	42.15	10.70	4278.14	
*	97.000	90.00	.00	.00	446.00	41800.00	463.70	463.02	466.85	102.86	14.83	3017.01	4121.49
	97.600	60.00	.00	.00	446.00	41800.00	464.39	463.69	467.46	97.02	14.91		4243.71
*	98.400	40.00	.00	.00	471.00	41800.00	478.02	478.02	480.51	34.92	12.65		7073.70
	98.780	38.00	.00	.00	471.00	41800.00	478.92	478.03	480.68	21.29	10.64		9058.29
*	99.330	55.00	.00	.00	448.00	41800.00	480.64	459.87	480.86	1.43	4.40		35011.86
	100.400	107.00	.00	.00	450.00	41800.00	480.71	463.55	480.88	2.08	2.07		28953.42
	102.000	160.00	.00	.00	453.00	41800.00	480.71	463.33	480.91	2.55	2.14		26177.83
	103.600	160.00	.00	.00	454.00	41800.00	480.74	464.35	480.96	3.08	2.27		23807.36
	104.950	135.00	.00	.00	455.00	41800.00	480.80	465.04	481.00	3.43	2.33		22561.34
	106.100	115.00	.00	.00	455.00	41800.00	480.78	466.53	481.06	2.96	2.21		24313.98
*	107.900	180.00	.00	.00	456.00	41800.00	480.69	467.14	481.21	8.63	3.69		14228.17
	109.400	150.00	.00	.00	457.00	41800.00	480.78	468.26	481.38	11.19	4.01		12495.92
	110.650	125.00	_00	.00	457.00	41800.00	480.90	468.80	481.53	10.71	3.93		3 12773.48
	112.150	150.00	.00	.00	458.00	41800.00	481.18	470.28	481.71	12.88	4.14		11645.99
	113.650	150.00	.00	.00	459.00	41800.00	481.28	470.82	481.98	16.07	4.53		10426.94
	115.150	150.00	.00	.00	460.00	41800.00	481.43	471.34	482.28	18.68	4.84		9670.48
	116.450	130.00	.00	.00	460.00	41800.00	481.63	472.45	482.52	16.26	4.59		7 10366.06
	117.600	115.00	.00	.00	461.00	41800.00	481.65	473.72	482.81	21.26	5.10		9065.43
	118.500	90.00	.00	.00	461.00	41800.00	481.91	474.55	483.02	22.16	5.16	5516.79	8879.51

1 4/30/90 8:54:53

MALIBU CREEK (u) SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	.000	41800.00	301.04	.00	.00	7.04	176.51	.00
*	1.500	41800.00	307.00	.00	5.96	.00	317.38	150.00

PAGE 16

.

	3.000	41800.00	307.20	.00	.19	.00	291.58	150.00	
*	7.500	41800.00	307.83	.00	.63	.00	221.04	450.00	
*	14.500	41800.00	313.62	.00	5.79	.00	285.07	700.00	
*	20.500	41800.00	314.90	.00	1.28	.00	177.22	600.00	
	28.000	41800.00	320.46	.00	5.56	.00	165.02	750.00	
	35.000	41800.00	326.79	.00	6.33	.00	160.39	700.00	
*	43.000	41800.00	351.14	.00	24.34	.00	181.72	800.00	
*	48.500	41800.00	373.69	.00	22.55	.00	87.38	550.00	
*	54.250	41800.00	391.05	.00	17.36	.00	138.66	425.00	
*	59.500	41800.00	411.15	.00	20.11	.00	152.40	525.00	
*	65.200	41800.00	432.57	.00	21.42	.00	125.14	570.00	
	77.000	41800.00	451.32	.00	18.75	.00	189.09	1180.00	
*	86.000	41800.00	459.03	.00	7.71	.00	558.85	700.00	
*	91.000	41800.00	460.00	.00	.96	.00	260.79	500.00	
*	93.500	41800.00	462.95	.00	2.95	.00	329.27	250.00	
	96.100	41800.00	464.22	.00	1.28	.00	454.91	260.00	
*	97.000	41800.00	463.70	.00	52	.00	389.34	90.00	
	97.600	41800.00	464.39	.00	.69	.00	406.79	60.00	
*	98.400	41800.00	478.02	.00	13.63	.00	674.78	40.00	
	98.780	41800.00	478.92	.00	.90	.00	717.95	38.00	
*	99.330	41800.00	480.64	.00	1.72	.00	800.00	55.00	
	100,400	41800.00	480.71	.00	.07	.00	750.00	107.00	
1									
	/ /70 /00	8.54.1	57						

4/30/90 8:54:53

1

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
	102.000	41800.00	480.71	.00	.00	.00	680.00	160.00
	103.600	41800.00	480.74	.00	.03	.00	680.00	160.00
	104.950	41800.00	480.80	.00	.06	.00	765.00	135.00
	106.100	41800.00	480.78	.00	01	.00	626.00	115.00
*	107.900	41800.00	480.69	.00	10	.00	431.00	180.00
	109.400	41800.00	480.78	.00	.10	.00	421.00	150.00
	110.650	41800.00	480.90	.00	.12	.00	411.00	125.00
	112.150	41800.00	481.18	.00	.28	.00	561.00	150.00
	113.650	41800.00	481.28	.00	.10	.00	426.00	150.00
	115.150	41800.00	481.43	.00	.15	.00	376.00	150.00
	116.450	41800.00	481.63	.00	.20	.00	376.00	130.00
	117.600	41800.00	481.65	.00	.03	.00	336.00	115.00
	118.500	41800.00	481.91	.00	.25	.00	360.00	90.00

4/30/90 8:54:53

1

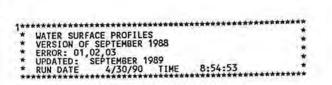
SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION SECNO=.000PROFILE=1CRITICAL DEPTH ASSUMEDWARNING SECNO=1.500PROFILE=1CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGEWARNING SECNO=7.500PROFILE=1CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGEWARNING SECNO=14.500PROFILE=1CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGEWARNING SECNO=20.500PROFILE=1CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGECAUTION SECNO=20.500PROFILE=1CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGECAUTION SECNO=43.000PROFILE=1CRITICAL DEPTH ASSUMEDCAUTION SECNO=48.500PROFILE=1CRITICAL DEPTH ASSUMEDCAUTION SECNO=48.500PROFILE=1CRITICAL DEPTH ASSUMED

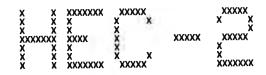
÷

PAGE 17

PAGE 18


CAUTION		54.250 54.250	PROFILE= PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION		59.500 59.500	PROFILE= PROFILE=	1 1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION CAUTION		65.200 65.200	PROFILE= PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING	SECNO=	86.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	91.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	93.500	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	97.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION		98.400 98.400	PROFILE= PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING	SECNO=	99.330	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING	SECNO=	107.900	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE


ø


RIVERTECH, INC.

APPENDIX 5

MALIBU CREEK HYDRAULIC ANALYSIS FOR COMPLETE BLOCKAGE OF BRIDGE OPENING

END OF BANNER 1 4/30/90

PAGE 1

8:54:53 THIS RUN EXECUTED 4/30/90

HEC2 RELEASE DATED SEP 88 UPDATED SEPT 1989

8:54:53

ERROR CORR - 01,02,03 MODIFICATION -

MALIBU CREEK ULTIMATE VEGETATION GROWTH SCENARIO. RIVERTECH, FEB., 1990 ALL CROSS SECTIONS LOOKING DOWNSTREAM. **complete blockage at bridge** MALIBU CREEK (u) T1 T2 T3

т3	MAL	IBU CREEK	(u)									
J1	ICHECK	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q	WSEL	FQ		
	0	2	0	0	-1	0	0	0	294	0		
J2	NPROF	IPLOT	PRFVS	XSECV	XSECH	FN	ALLDC	IBW	CHNIM	ITRACE		
	1	0	-1	0	0	0	-1	0	0	0		
NC QT X1	0.040	0.040 41800	0.055	5	0.1	0.3						
X1 GR	0.00 305	100	100 289	2	277 101	0 289	0 276	0 305	277			
X1 GR GR	1,50 320 286	8 100 390	260 300 298)) 3	390 160 440	100 292 320	200 260 480	150 288	320	:	286	350
X1 GR GR	3.00 320 290	9 100 360	230 300 290	0 0 8	360 140 370	150 292 300	160 230 410	150 286 320	290 430		286	315
X1 GR GR	7.50 320 292	8 100 240	13 29 30	5 0 2	240 135 285	400 288 320	500 140 440	450 288	155		290	170
X1 GR GR	14,50 320 290	9 100 265	21 30 29	4	360 120 305	750 306 296	650 180 360	700 306 320	210 405		290	250
X1 GR GR	20.50 330 296	9 100 210	14 30 3 0	0	260 140 260	550 296 310	650 160 290	600 294 330	180 320		294	200
X1 GR GR	28.00 330 330	6 100 300	30	5 0	230 135	700 300	800 175	750 304	230		310	250
1	4/30/90	8:54	:53									PAGE
X1 GR GR	35.00 340 310	8 100 230	15 31 31	0 0 0	260 150 260	700 308 340	750 160 300	700 310	170		312	200
X1 GR GR	43_00 360 360	6 100 320	34	0 0	280 150	800 336	800 180	800 336	210		338	280
X1 GR	48.50 380	5 100	14 35	5	170 135	550 344	550 145	550 3 44	170		380	200
X1 GR GR	54.25 400 400	6 100 270) 38	60 60	230 130	425 370	425 160	425 370	190	I	380	230
X1	59.50	6	5 14	0	245	525	525	525				

3												
	GR GR	420 420	100 290	400	140	392	160	392	205	400	245	
	X1 GR GR	65.20 460 420	7 100 230	145 420 460	230 130 280	570 414	570 145	570 412	165	414	190	
-	X1 GR GR	77.00 470 470	6 100 370	145	285 145	1180 434	1180 220	1180 434	270	440	285	
	X1 GR GR GR	86.00 470 450 454	12 100 470 840	310 460 460 470	470 250 490 880	900 450 460	600 310 520	700 440 452	360 570	440 452	425 760	
	X1 GR GR	91.00 480 442	10 100 345	215 460 450	370 140 370	500 450 463	450 215 410	500 444 464	250 730	442 480	315 790	
	X1 GR GR GR	93.50 480 444 470	12 100 330 745	270 470 444 480	435 130 395 790	290 460 450	160 145 435	250 458 463	210 470	448 463	270 685	
	X1 GR GR GR	96.10 480 445 480	11 100 430 700	305 460 445	505 140 460	290 460 456	230 235 505	260 454 460	305 540	450 470	360 650	
	X1 GR GR	97.00 480 454 460	13 100 355 530	325 466 450 470	490 135 435 600	110 462 446 480	85 190 465 720	90 460 446	280 485	456 450	325 490	
	GR 1	460 4/30/90	530 8:54:53	470	000		120				PAGE	3
	X1 GR GR GR	97_60 480 454 448	14 100 390 520	355 470 454 462	520 130 415 521	60 462 452 470	60 175 440 680	60 460 446 480	285 485 735	456 446	355 510	
	NC X1 GR GR	.020 98.40 480 476	-020 7 100 720	.020 100 472 480	870 185 870	40 471	40 270	40 472	510	474	650	
	X1	98.78	0			38	38	38				
	NC X1 GR GR GR	0.040 99.33 480 450 448 480	0.035 16 100 480 645 900	0.040 490 472 448 448	645 265 490 660	55 470 448 462	55 415 505 685	55 468 450 466	435 570 700	455 450 470	435.1 635 800	
	NC X1 GR GR GR	0.041 100.40 480 454 450 480	0.042 16 100 500 695 850	0.100 535 470 450 460	680 200 535 710	70 466 450 464	120 255 570 735	107 462 452 470	350 595 755	460 450 472	480 680 810	
	X1 GR GR GR	102.00 480 456 466	14 100 450 710	480 472 454 470	670 190 480 720	80 462 454 470	160 260 550 760	160 460 453 480	330 650 780	458 454	425 670	
	X1 GR GR GR	103.60 480 458 456	15 100 455 685	475 472 456 460	685 210 475 705	130 464 456 468	130 260 520 720	160 462 454 468	290 645 775	460 454 480	395 665 780	
	X1 GR GR GR GR	104.95 480 458 456 480	16 100 515 695 865	515 470 456 456	750 280 600 750	135 464 456 462	135 350 640 780	135 462 455 468	380 675 790	460 455 468	490 685 835	
	X1 GR GR GR	106_10 480 458 456	13 100 485 695	640 472 456 472	695 190 550 725	115 470 456 480	115 280 640 726	115 466 455	360 670	460 455	455 685	
	X1 GR GR 1	107.90 480 456 4/30/90	10 100 390 8:54:53	340 470 456	510 140 495	160 466 458	190 195 510	180 460 472	320 530	456 480	340 531 PAGE	
	X1 GR GR GR	109_40 480 458 460	14 100 300 485	295 468 457 470	485 135 315 500	150 466 457 472	150 180 340 520	150 462 458 480	270 400 521	460 458	295 470	
	X1	110.65	12	300	480	125	125	125				

GR GR GR	457	10 31 51	00 15 10	470 457 480	140 340 511	466 458		195 365	460 458	275 445	458 460	300 480	
NC X1 GR GR	112.15 480 458	10 38	42 0 12 30 30 50	0.100 355 470 458 480	535 215 415 661	150 468 460		150 250 470	150 462 462	315 535	460 476	355 580	
X1 GR GR	480 459	10 33	11 00 35 26	295 470 459	480 165 359	150 468 460		150 200 370	150 462 462	275 480	460 474	295 525	
X1 GR GR	480	10	10 00 00	280 470 460	450 145 350	150 468 462		150 180 450	150 466 470	195 475	462 480	280 476	
X1 GF GF	t 480	- 10	10 00 05	350 470 460	445 170 440	130 468 462		130 195 445	130 464 468	280 475	461 480	350 476	
X1 GF GF	2 480	10	10 00 40	310 472 461	395 125 370	115 468 462		115 160 395	115 466 472	250 435	462 480	310 436	
X ⁴ GF GI	8 480 8 462	1	11 00 95 60	275 472 461	390 125 360	90 468 461		90 175 390	90 468 462	250 415	466 466	275 430	
1	4/30/90	8:	54:53									PAGE	5
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST			
Ci 0 C 3	PROF 1 RITICAL DE CHV= SECNO .00 720 CRITIC .000 41800. .00 .022856	100 CEHV=	.30		L CROSS SI 294.00 0. .000 0	307.10 2117. .055 16	6.06 0. .000 0	.00 0. .000	.00 0. 289.00 176.51	305.00 305.00 100.25 276.75			
	SECNO 1.50 301 HV CHA		E THAN H	/INS									
3	302 WARNIN	IG: CONVE	EYANCE CI	ANGE OUTS	IDE OF AC	CEPTABLE R	RANGE, K	RATIO =	3.08				
0	1.500 41800. .00 .002402	21.00 10190. 8.68 100.	307.00 23118. 9.40 150.	300.67 8491. 10.31 200.	.00 1174. .040 3	308.38 2461. .055 11	1.38 824. .040 0	.82 11. .000 .00	.47 1. 286.00 317.38	292.00 286.00 138.99 456.37			
- * 0	SECNO 3.00 3.000 41800. .01 .003153 SECNO 7.50	21.20 10725. 10.13 150.	307.20 26894. 10.82 150.	4181.	.00 1059. .040 2	308.89 2485. .055 19	1.69 486. .040 0	.42 26. .000 .00	.09 2. 286.00 291.58	292.00 290.00 125.61 417.19			
3	301 HV CH	ANGED MORE	E THAN H	VINS									
3	302 WARNII	NG: CONVI	EYANCE C	HANGE OUT	SIDE OF AC	CEPTABLE	RANGE,)	(RATIO =	.62				
0	7.500 41800. .02 .008219	19.83 2236. 12.05 400.	307.83 30649. 16.54 450.	305.66 8914. 14.06		311.72 1853. .055 15	3.89 634. .040 0	2.16 60. .000 .00	.66 5. 288.00 221.04	290.00 292.00 114.19 335.23			
ĭ	4/30/9	0 8	:54:53									PAGE	6
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG Ach Xnch Idc	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	BANK ELEV LEFT/RIGHT SSTA ENDST			

*SECNO 14.500

-

3301 HV CHANGED MORE THAN HVINS

421

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.60 306.00 296.00 107.97 393.04 .22 3.40 14.500 41800. .03 .003207 23.62 6733. 8.38 750. .71 307.97 .00 313.62 115 2404. 8.26 650. 804. 291. 32664 .000 11.02 700. .055 290.00 285.07 0 *SECNO 20.500 3301 HV CHANGED MORE THAN HVINS 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .65 300.00 300.00 120.13 297.35 3.92 315. .040 2.83 161. .000 .00 .66 20.500 .00 318.82 20.90 314.90 311.73 41800. .05 .007615 2198. .055 .15 35843. 16.31 600. 4380. 13.91 650. 148. .040 294.00 10.66 0 *SECNO 28.000 3301 HV CHANGED MORE THAN HVINS 300.00 304.00 111.13 276.15 5.96 205. .000 .00 4.49 406. .040 .17 317.64 6303. 15.53 800. .00 244. .040 3 20.46 3224. 13.20 324 .95 28,000 320. 46 1834 .055 15 32273. 41800 300.00 .008212 700. 750. 0 *SECNO 35.000 3301 HV CHANGED MORE THAN HVINS .33 17. 308.00 160.39 310.00 310.00 122.00 282.40 7.10 243. .000 5.58 188. .040 18.79 3659. 15.56 700. .00 332.37 35.000 41800. .07 325.59 326.79 35346. 19.55 700. 2795. 14.86 750. 235. 1808. .00 15 012612 0 1 4/30/90 8:54:53 WSELK ALOB XNL ITRIAL CRIWS QROB EG ACH XNCH IDC н OLOSS BANK ELEV CWSEL QCH HV DEPTH SECNO LEFT/RIGHT AROB VOL WTN TWA QLOB VLOB VROB XLOBR TIME VCH ICONT CORAR TOPWID ENDST SLOPE XLOBL XLCH *SECNO 43.000 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 43.000 15.14 351.14 41800. 2209. 37190. .08 14.25 20.24 .016460 800. 800. 340.00 338.00 122.16 303.88 11.48 284. .000 351.14 2401 15.31 800 .00 357.17 6.03 żi. 1838. 155. .040 336.00 15 n . 00 0 *SECNO 48.500 3301 HV CHANGED MORE THAN HVINS 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 48.500 29.69 373.69 41800. 14350. 20822. .09 24.15 28.05 .011725 550. 550. 344.00 344.00 107.36 194.74 .00 594. .040 0 10.00 367. .040 7.59 308. .000 .00 1.19 22. 344.00 383.69 373.69 742. .055 6629 18.05 87.38 .011725 0 *SECNO 54.250 3301 HV CHANGED MORE THAN HVINS 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 54.250 21.05 391.05 41800. 1167. 39001. .09 12.75 22.23 .015409 425. 425. 5.69 326. .000 380.00 380.00 113.43 252.09 391.05 1632. 13.38 425. .00 92. .040 7.34 122. .040 .27 398.38 1755. 370.00 . ÓÓ .01340. *SECNO 59.500 7185 MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 59.500 19.15 411.15 41800. 1663. 38239. .10 13.37 21.59 015200 525. 525. .05 25. 392.00 152.40 400.00 400.00 117.69 8.03 350. .000 418.02 1771. .055 11 6.86 140 .040 .00 124. .040 411.15 1898. 13.56 525. 270.09 .00 01 4/30/90 8:54:53 OLOSS BANK ELEV TWA LEFT/RIGHT ELMIN SSTA TOPWID ENDST HV AROB XNR I CONT EG ACH XNCH CWSEL QCH VCH XLCH CRIWS QROB VROB WSELK HL VOL BANK ELEV SECNO DEPTH ALOB QLOB ۵ WTN TIME VLOB

PAGE 7

PAGE 8

*SECNO 65.200

SLOPE

١

3301 HV CHANGED MORE THAN HVINS

XLO8L

XLOBR

ITRIAL

IDC

CORAR

0	7405		C ENERCY									
	7185 MINIMU 3720 CRITIC 65.200	AL DEPTH / 20.57	ASSUMED	432.57	00	440.32	7.75	8.59	.27	414.00 420.00		
	41800.	6948. 23.73	33556. 22.32	1296. 13.12	293. .040 0	1503. .055 8	99. .040 0	376. .000 .00	.27 27. 412.00 125.14	120.57 245.71		
	.014950 0 *SECNO 77.0	570. 00	570.	570.	U	Ŭ	•					
	3301 HV CHA		THAN HVI	NS								
	77.000	17.32	451.32	449.82	.00 96.	456.06 2156.	4.73 182.	15.44 434	.30 31.	440.00 440.00		
	41800. .12 .011550	1080.11.22	38501. 17.86 1180.	2218. 12.20 1180.	.040 2	.055	.040	.000	434.00 189.09	128.01 317.10		
	0 *SECNO 86.0	1.11			-							
	3265 DIVIDE											
	3301 HV CHA	NGED MORE	THAN HV	INS								
	3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO ≖ 1.87											
	86.000	19.03	459.03	456.17	.00 245.	460.25	1.21	3.84	.35	450.00 450.00		
	41800. .15 .003298	1415. 5.78 900.	9.80 700.	15204. 7.28 600.	.040 3	2571. .055 10	.040	.000	440.00 558.85	255.79 852.59		
	0 *SECNO 91.0		1223									
	3301 HV CHA	NGED MORE	THAN HV	INS								
	1 4/30/90) 8:	:54:53									
	SECNO	DEPTH	CWSEL	CR I WS QROB	WSELK ALOB	EG Ach	HV Arob	KL VOL	OLOSS TWA L	BANK ELEV EFT/RIGHT		
	Q TIME SLOPE	QLOB VLOB XLOBL	QCH VCH XLCH	VROB XLOBR	XNL ITRIAL	XNCH IDC	XNR ICONT	WTN CORAR	ELMIN TOPWID	SSTA ENDST		
	3302 WARNII		TANCE CU	ANGE OUTSI			RANGE, KI	ATIO =	.65			
	91.000	18.00	460.00	457.52	.00	463.24	3.24	2.38	.61 41.	450.00 450.00		
	41800. .16	3602. 9.60	36762.	1437. 9.33 450.	375. .040 3	2451. .055 16	.040	.000	442.00 260.79	139.99 400.78		
	.007887 0 *SECNO 93.	500. 500	500.	430.	L	10						
	3301 HV CH		E THAN HV	INS								
	3302 WARNI				IDE OF AC	CEPTABLE	RANGE, K	RATIO =	1.44			
	93,500	18,95	462.95	457.72	.00	464.72 2886.	1.78	1.34	.15	448.00 450.00		
	41800. .16 .003804	7749. 9.01 290.	32331. 11.20 250.	1720. 7.62 160.	860. .040 3	2800. .055 15	.040 0	.000	444.00 329.27	140.58 469.85		
	0 *SECNO 96.	100			-		-			454 00		
	96.100 41800.	19.22	464.22	460.91	.00 925.	465.80 3037.	1.58 316.	1.06 581. .000	.02 46. 445.00	454.00 456.00 131.55		
	.004215	7.72	10.70 260.	6.83 230.	.040 2	.055 15	.040 0	.00	454.91	586.47		
	0 *SECNO 97.	000										
	3301 HV CH	ANGED MOR	E THAN H	/INS								
	3302 WARNI	NG: CONV	EYANCE CH	ANGE OUTS	IDE OF AC	CEPTABLE	RANGE, K	RATIO =				
	97.000 41800.	17.70 4925.	463.70 31165.	463.02 5710.	.00 520.	466.85 2101.	3.15 396.	.58 588.	.47	450.00		
	.010286	9.47 110.	14.83	14.41 85.	.040 3	.055 15	.040 0	.000 .00	446.00 389.34	166.58 555.92		
	0 1 4/30/9	on •	:54:53									
	4/30/9	-					411.2	u		BANK ELEV		
	SECNO	DEPTH	CWSEL QCH	CRIWS QROB	WSELK ALOB	EG ACH	HV AROB XNR	HL VOL WTN	OLOSS TWA ELMIN	LEFT/RIGHT SSTA		
	T I ME SLOPE	VLOB XLOBL	VCH XLCH	VROB XLOBR	XNL ITRIAL	XNCH IDC	ICONT	CORAR	TOPWID	ENDST		
	*SECNO 97.	.600	464.39	463.69	.00	467.46	3.07	.60	.01 47.	456.00		
	97.600 41800.	8756.	32785.	258.	835. .040	2198. .055	.040	593.	446.00	161.59		
	.009702	60.	60.	60.	3	5	- 0	.00	406.79	568.38		

PAGE 9

PAGE 10

1										
	*SECNO 98.40	00								
	3301 HV CHAN	NGED MORE	THAN HVI	NS						
	7185 MINIMU 3720 CRITIC/ 98.400 41800. .17 .003492 0 *SECNO 98.74	AL DEPTH / 7.02 0. .00 40.		478.02 0. .00 40.	.00 0. 000 0	480.51 3303. .020 18	2.49 0. .000 0	.22 596. .000 .00	.06 47. 471.00 674.78	480.00 480.00 121.02 795.81
				NC						
	3301 HV CHA			2.5	.00	480.68	1.76	.10	.07	480.00
	98.780 41800. .17 .002129 0	7.92 0. .00 38.	478.92 41800. 10.64 38.	478.03 0. .00 38.	0. .000 6	3928. .020 5	.000 0	599. .000 .00	48. 471.00 717.95	480.00 111.49 829.44
	*SECNO 99.3 3280 CROSS	30 Section	99.33	EXTENDED	.64	FEET				
	3301 HV CHA	NGED MORE	THAN HVI	INS						
	3302 WARNIN	G: CONVE	YANCE CHA	NGE OUTSI	DE OF ACC	EPTABLE R	ANGE, KR	ATIO = 3	5.87	
	99.330	32.64	480.64	459.87	4027.	480.86	.22	.02	.15 49.	448.00
	41800. 18 .000143 0	10127. 2.51 55.	21375. 4.40 55.	10298. 3.21 55.	4027. .040 2	4855. .040 14	3209. .035 0	609. .000 .00	448.00 800.00	448.00 100.00 900.00
	1 4/30/90	8:	54:53							
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	KL VOL WTN CORAR	OLOSS TWA LI ELMIN TOPWID	BANK ELEV EFT/RIGHT SSTA ENDST
	*SECNO 100. 3280 CROSS	400 Section	100.40	EXTENDED	.71	FEET				
	100.400 41800. 19 _000208	30.71 25040. 3.63 70.	480.71 8982. 2.07 107.	463.55 7779. 3.37 120.	_00 6898 _041 _2	480.88 4343. .100 18	.17 2310. .042 0	.02 636. .000 .00	.00 51. 450.00 750.00	450.00 450.00 100.00 850.00
	0 *SECNO 102. 3280 CROSS	.000 SECTION	102.00	EXTENDED	.7	FEET				
	102.000 41800. .20 .000255	27.71 25664. 4.15 80.	480.71 10972. 2.14 160.	463.33 5165. 3.45 160.	.00 6189. .041 2	480.91 5135. .100 22	.21 1498. .042 0	.03 673. .000 .00	.01 53. 453.00 680.00	454.00 454.00 100.00 780.00
	*SECNO 103. 3280 CROSS	.600 SECTION	103.60	EXTENDED	.74	4 FEET				
	103.600 41800. 21 .000308	26.74 24011. 4.33 130.	480.74 12198. 2.27 160.	464.35 5591. 3.88 130.	.00 5543. .041 0	480.96 5381. .100 22	1440 042 0	.04 714. .000 .00	.00 55. 454.00 680.00	456.00 456.00 100.00 780.00
	0 *SECNO 104 3280 CROSS	.950 SECTION	104.95	EXTENDED	.8	O FEET				
	104.950 41800. 22 .000343	25.80 21961. 4.17 135.	480.80 13435. 2.33 135.	465.04 6404. 4.02 135.	.00 5265. .041 2	481.00 5774. .100 22	.21 1591. .042 0	.04 753. .000 .00	.00 57. 455.00 765.00	458.00 456.00 100.00 865.00
	0 *SECNO 106 3280 CROSS	.100	106 10	EXTENDED	.7	8 FEET				
	106.100 41800. 22 .000296	25.78 36865. 4.36 115.	480.78 3086. 2.21 115.	466.53 1849. 3.64 115.	.00 8454. .041 2	481.06 1398. .100 14	.28 508. .042 0	.04 783. .000 .00	.02 59. 455.00 626.00	456.00 456.00 100.00 726.00
	0 1 4/30/9		:54:53							
	SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	BANK ELEV LEFT/RIGHT SSTA ENDST
	*SECNO 107 3280 CROSS	.900 SECTION	107.9	O EXTENDED		9 FEET				

-

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .59

PAGE 11

PAGE 12

456.00 458.00 100.00 531.00 .08 819. .000 .00 81.21 .53 08 480.69 15434. 3.69 180. 00 107.900 07.yc 41800. .2<u>3</u> 24.69 24573. 6.85 467.14 61. 456.00 431.00 3590. 1792. 5.63 190. 100 6.85 160. .000863 0 *SECNO 109.400 3280 CROSS SECTION 109.40 EXTENDED .77 FEET .15 846. .000 23.78 21652. 7.57 150. 480.78 17532. 4.01 150. 468.26 2616. 5.99 150. .00 2861. .041 81.38 4369. .100 18 .60 437. .042 0 460.00 109.400 41800. .24 .02 62. 457.00 421.00 460.00 100.00 521.00 .00 .001119 Ô 0 *SECNO 110.650 3280 CROSS SECTION 110.65 EXTENDED .91 FEET .01 63. 457.00 411.00 .14 868. .000 .00 480.90 16231. 3.93 125. .63 483. .042 458.00 110.650 41800. _24 .001071 23.90 22191. 7.58 125. .00 481.53 468.80 460.00 100.00 511.00 3378. 6.99 125. 2926. 4133 .100 0 R 0 *SECNO 112.150 3280 CROSS SECTION 112.15 EXTENDED 1.18 FEET 481.18 16140. 4.14 150. .53 885. .042 .01 460.00 23.18 20985. 7.01 150. . 18 112.150 41800. .25 .001288 470.28 00 894. 65. 458.00 561.00 462.00 100.00 661.00 2996. 4676. 5.29 150. 3897 100 .00 0 *SECNO 113.650 3280 CROSS SECTION 113.65 EXTENDED 1.28 FEET .05 67. 459.00 426.00 460.00 462.00 100.00 526.00 481.98 3876. .22 919. .000 .00 470.82 4650. 7.73 150. .70 602. .042 113.650 41800. .26 .001607 22.28 19603. 7.95 150. 481.28 17547. 4.53 150. 00 2464 .044 2 .100 0 8:54:53 4/30/90 OLOSS BANK ELEV TWA LEFT/RIGHT ELMIN SSTA HV AROB XNR I CONT HL VOL WSELK EG SECNO DEPTH CWSEL CRIWS ALOB XNL ITRIAL QROB VROB XLOBR ĂČH XNCH QLOB VLOB QCH VCH Q TIME WTN CORAR ENDST TOPWID IDC XLCH SLOPE XLOBL *SECNO 115.150 3280 CROSS SECTION 115.15 EXTENDED 1.43 FEET 462.00 462.00 100.00 476.00 .00 2422. .044 2 115.150 41800. .26 .001868 21.43 21194. 8.75 150. 471.34 3545. 9.04 150. .86 392. .042 .26 942. .000 .00 05 482.28 481.43 68. 460.00 376.00 17061. 4.84 150. 3522. 8 0 *SECNO 116.450 3280 CROSS SECTION 116.45 EXTENDED 1.63 FEET 3447 461.00 462.00 100.00 476.00 .23 961. .000 .00 21.63 28841. 8.37 130. 481.63 9281. 4.59 130. 01 116.450 41800. .27 .001626 482.52 45 506. .042 69 3678. 7.26 130 2022 .044 460.00 .100 0 *SECNO 117.600 3280 CROSS SECTION 117.60 EXTENDED 1.65 FEET 462.00 462.00 100.00 436.00 .21 975. .000 473.72 5618. 9.49 115. 1.16 592. .042 08 20.65 27364. 9.35 115. 481.65 8818. 5.10 115. 482.81 .00 117.600 70. 461.00 336.00 1728. .100 14 2927 41800. .27 .002126 .044 0 *SECNO 118.500 3280 CROSS SECTION 1.91 FEET 118.50 EXTENDED .20 986. .000 .00 1.11 1046. .042 466.00 01 481.91 11930. 5.16 90. 74.55 1062 10.57 90 483.02 20.91 18808. 8.71 90. .00 118.500 461.00 100.00 460.00 2159. 2312. 41800 461.00 .002216 0 4/30/90 8:54:53 ***** HEC2 RELEASE DATED SEP 88 UPDATED SEPT 1989

PAGE 13

PAGE 14

THIS RUN EXECUTED 4/30/90 8:55: 6

ERROR CORR - 01,02,03 MODIFICATION -

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

MALIBU CREEK (u)

1

0011													
	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
*	.000	.00	.00	.00	289.00	41800.00	301.04	301.04	307.10	228.56	19.75	2116.66	2764.90
*	1.500	150.00	.00	.00	286.00	41800.00	307.00	300.67	308.38	24.02	9.40	4458.41	8528.78
	3.000	150.00	.00	.00	286.00	41800.00	307.20	301.89	308.89	31.53	10.82		7443.97
*	7.500	450.00	.00	.00	288.00	41800.00	307.83	305.66	311.72	82.19	16.54	2672.03	4610.57
*	14.500	700.00	.00	.00	290.00	41800.00	313.62	307.97	315.33	32.07	11.02		7381.19
*	20.500	600.00	.00	.00	294.00	41800.00	314.90	311.73	318.82	76.15	16.31	2660.95	4789.98
	28.000	750.00	.00	.00	300.00	41800.00	320.46	317.64	324.95	82.12	17.60	2483.71	4612.70
	35.000	700.00	.00	.00	308.00	41800.00	326.79	325.59	332.37	126.12	19.55	2231.04	3722.09
*	43.000	800.00	.00	.00	336.00	41800.00	351.14	351.14	357.17	164.60	20.24	2149.60	3258.07
*	48.500	550.00	.00	.00	344.00	41800.00	373.69	373.69	383.69	117.25	28.05	1703.69	3860.26
*	54.250	425.00	.00	.00	370.00	41800.00	391.05	391.05	398.38	154.09	22.23	1968.17	3367.38
*	59.500	525.00	.00	.00	392.00	41800.00	411.15	411.15	418.02	152.00	21.59		3390.46
*	65.200	570.00	.00	.00	412.00	41800.00	432.57	432.57	440.32	149.50	22.32	1895.03	3418.64
	77.000	1180.00	.00	.00	434.00	41800.00	451.32	449.82	456.06	115.50	17.86	2434.19	3889.46
*	86.000	700.00	.00	.00	440.00	41800.00	459.03	456.17	460.25	32.98	9.80	4903.32	7278.88
*	91.000	500.00	.00	.00	442.00	41800.00	460.00	457.52	463.24	78.87	15.00	2979.93	4706.88
*	93.500	250.00	.00	.00	444.00	41800.00	462.95	457.72	464.72	38.04	11.20	3971.11	6777.20
1												PAGE 1	5
	4/30/90	8:54:5	3										-
	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
	96.100	260.00	.00	.00	445.00	41800.00	464.22	460.91	465.80	42.15	10.70	4278.14	6438.18
*	97.000	90.00	.00	.00	446.00	41800.00	463.70	463.02	466.85	102.86	14.83	3017.01	
	97.600	60.00	.00	.00	446.00	41800.00	464.39	463.69	467.46	97.02	14.91	3099.29	4243.71
*	98.400	40.00	.00	.00	471.00	41800.00	478.02	478.02	480.51	34.92	12.65	3303.24	7073.70
	98.780	38.00	.00	.00	471.00	41800.00	478.92	478.03	480.68	21.29	10.64		9058.29
*	99.330	55.00	.00	.00	448.00	41800.00	480.64	459.87	480.86	1.43	4.40	12090.66	
	100.400	107.00	.00	.00	450.00	41800.00	480.71	463.55	480.88	2.08	2.07	13550.96	28953.42
	102.000	160.00	.00	.00	453.00	41800.00	480.71	463.33	480.91	2.55	2.14	12821.84	26177.83
	103.600	160.00	.00	.00	454.00	41800.00	480.74	464.35	480.96	3.08	2.27	12363.90	23807.36
	104.950	135.00	.00	.00	455.00	41800.00	480.80	465.04	481.00	3.43	2.33	12630.97	22561.34
	106.100	115.00	.00	.00	455.00	41800.00	480.78	466.53	481.06	2.96	2.21	10360.18	
*	107.900	180.00	.00	.00	456.00	41800.00	480.69	467.14	481.21	8.63	3.69	8089.83	14228.17
	109.400	150.00	.00	.00	457.00	41800.00	480.78	468.26	481.38	11.19	4.01		12495.92
	110.650	125.00	.00	.00	457.00	41800.00	480.90	468.80	481.53	10.71	3.93	7542.18	12773.48
	112.150	150.00	.00	.00	458.00	41800.00	481.18	470.28	481.71	12.88	4.14		11645.99
	113.650	150.00	.00	.00	459.00	41800.00	481.28	470.82	481.98	16.07	4.53		10426.94
	115.150	150.00	.00	.00	460.00	41800.00	481.43	471.34	482.28	18.68	4.84	6336.01	9670.48
	116.450	130.00	.00	.00		41800.00	481.63	472.45	482.52	16.26	4.59		10366.06
	117.600	115.00	.00	.00		41800.00	481.65	473.72	482.81	21.26	5.10		9065.43
	118.500	90.00	.00	.00		41800.00	481.91	474.55	483.02	22.16	5.16	5516.79	8879.51
A211													

1

.

4/30/90 8:54:53

MALIBU CREEK (U) SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	.000	41800.00	301.04	.00	.00	7.04	176.51	.00
*	1.500	41800.00	307.00	.00	5.96	.00	317.38	150.00

PAGE 16

	3.000	41800.00	307.20	.00	. 19	.00	291.58	150.00	
*	7.500	41800.00	307.83	.00	.63	.00	221.04	450.00	
*	14.500	41800.00	313.62	.00	5.79	.00	285.07	700.00	
*	20.500	41800.00	314.90	.00	1.28	.00	177.22	600.00	
	28.000	41800.00	320.46	.00	5.56	.00	165.02	750.00	
	35.000	41800.00	326.79	.00	6.33	.00	160.39	700.00	
*	43.000	41800.00	351.14	.00	24.34	.00	181.72	800.00	
*	48.500	41800.00	373.69	.00	22.55	.00	87.38	550.00	
*	54.250	41800.00	391.05	.00	17.36	.00	138.66	425.00	
*	59.500	41800.00	411.15	.00	20.11	.00	152.40	525.00	
*	65.200	41800.00	432.57	.00	21.42	.00	125.14	570.00	
	77.000	41800.00	451.32	.00	18.75	.00	189.09	1180.00	
*	86.000	41800.00	459.03	.00	7.71	.00	558.85	700.00	
*	91.000	41800.00	460.00	.00	.96	.00	260.79	500.00	
*	93.500	41800.00	462.95	.00	2.95	.00	329.27	250.00	
	96.100	41800.00	464.22	.00	1.28	.00	454.91	260.00	
*	97.000	41800.00	463.70	.00	52	.00	389.34	90.00	
	97.600	41800.00	464.39	.00	.69	.00	406.79	60.00	
*	98.400	41800.00	478.02	.00	13.63	.00	674.78	40.00	
	98.780	41800.00	478.92	.00	-90	.00	717.95	38.00	
*	99.330	41800.00	480.64	.00	1.72	.00	800.00	55.00	
	100.400	41800.00	480.71	.00	.07	.00	750.00	107.00	
22									

1 4/30/90 8:54:53

ł

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
	102.000	41800.00	480.71	.00	.00	.00	680.00	160.00
	103.600	41800.00	480.74	.00	.03	.00	680.00	160.00
	104.950	41800.00	480.80	.00	.06	.00	765.00	135.00
	106.100	41800.00	480.78	.00	01	.00	626.00	115.00
*	107.900	41800.00	480.69	.00	10	.00	431.00	180.00
	109.400	41800.00	480.78	.00	.10	.00	421.00	150.00
	110.650	41800.00	480.90	.00	. 12	.00	411.00	125.00
	112.150	41800.00	481.18	.00	.28	.00	561.00	150.00
	113.650	41800.00	481.28	.00	.10	.00	426.00	150.00
	115.150	41800.00	481.43	.00	.15	.00	376.00	150.00
	116.450	41800.00	481.63	.00	.20	.00	376.00	130.00
	117.600	41800.00	481.65	.00	.03	.00	336.00	115.00
	118.500	41800.00	481.91	.00	.25	.00	360.00	90.00

4/30/90

1

8:54:53

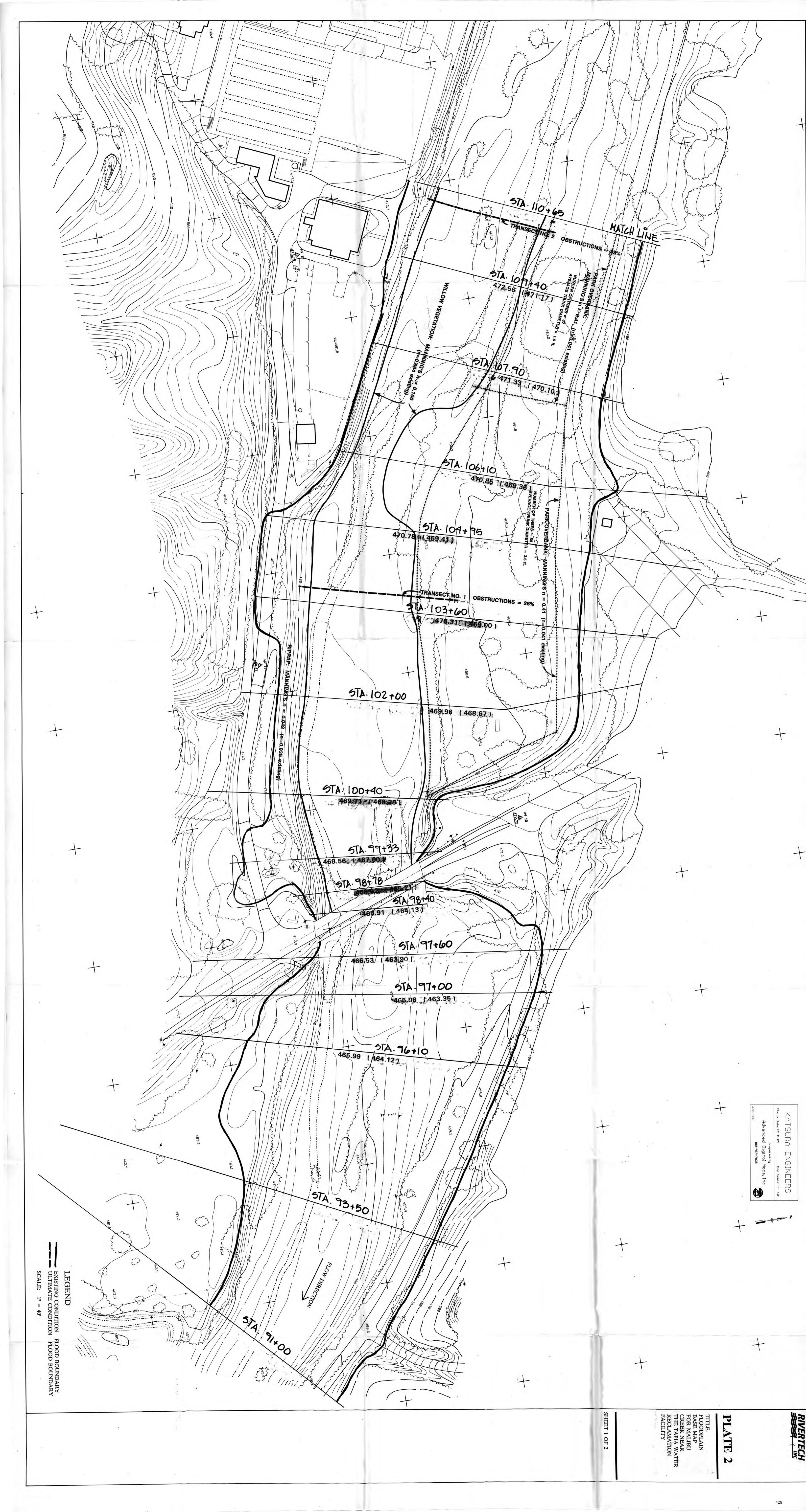
SUMMARY OF ERRORS AND SPECIAL NOTES

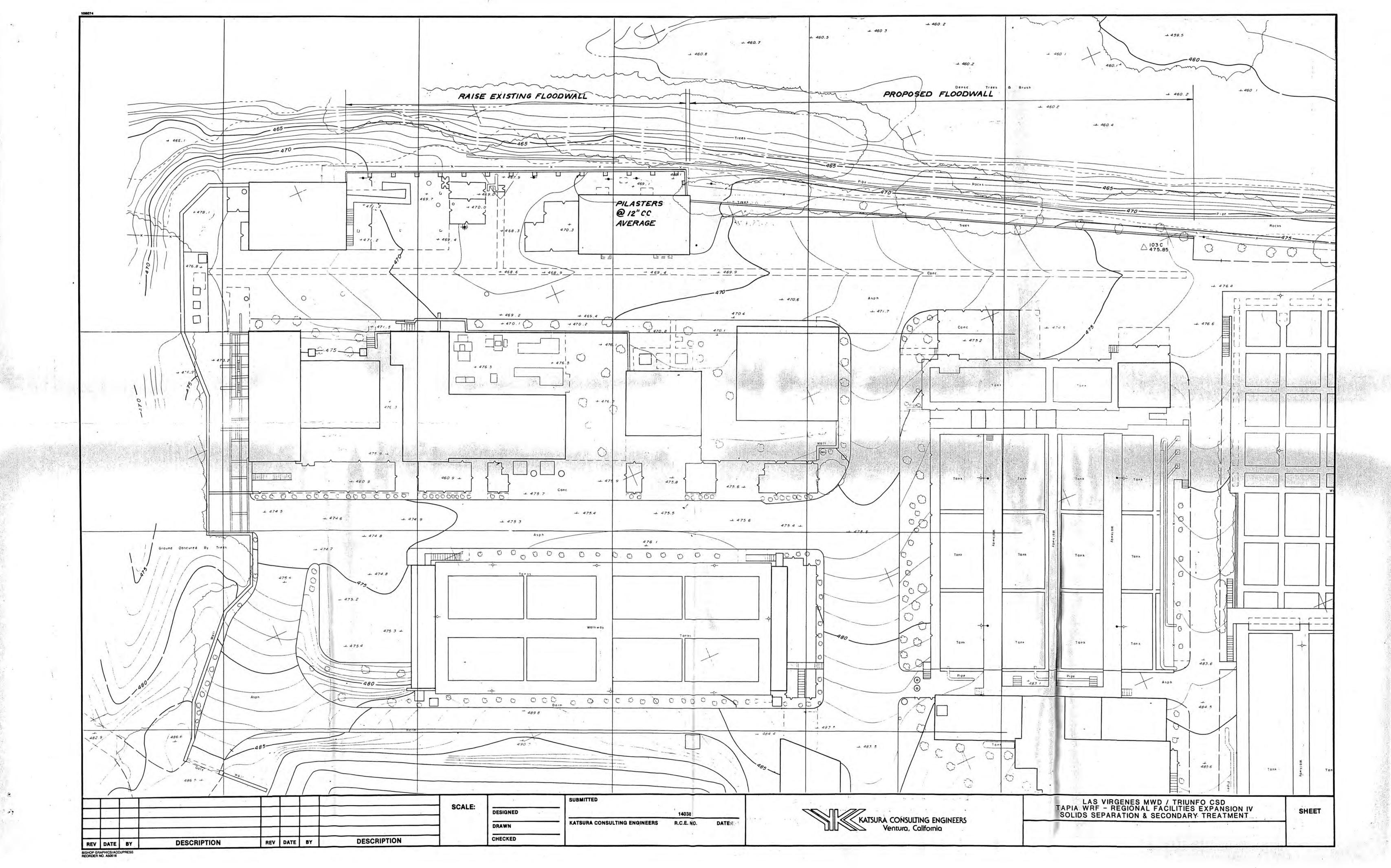
.000 PROFILE= 1 CRITICAL DEPTH ASSUMED CAUTION SECNO= 1.500 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 7.500 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 14.500 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 20.500 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 43.000 PROFILE= 1 CRITICAL DEPTH ASSUMED 43.000 PROFILE= 1 MINIMUM SPECIFIC ENERGY CAUTION SECNO= CAUTION SECNO= 48.500 PROFILE= 1 CRITICAL DEPTH ASSUMED 48.500 PROFILE= 1 MINIMUM SPECIFIC ENERGY CAUTION SECNO= CAUTION SECNO=

2

PAGE 17

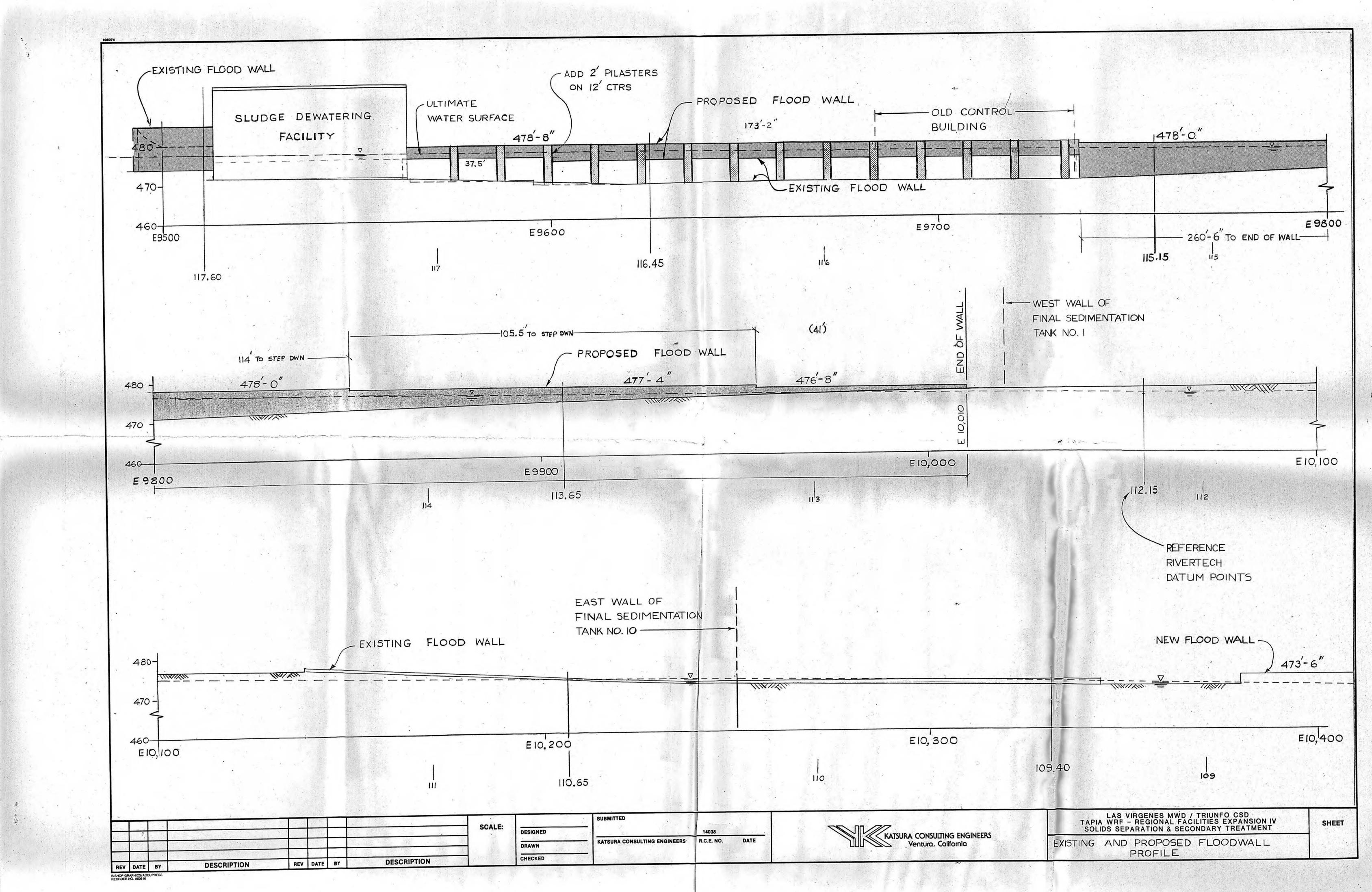
PAGE 18


427


CAUTION SECNO= CAUTION SECNO=	54.250 PROFIL 54.250 PROFIL		CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION SECNO= CAUTION SECNO=	59.500 PROFIL 59.500 PROFIL		CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION SECNO= CAUTION SECNO=	65.200 PROFIL 65.200 PROFIL		CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING SECNO=	86.000 PROFIL	E= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	91.000 PROFIL	E= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	93.500 PROFIL	.E= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	97.000 PROFIL	.E= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION SECNO= CAUTION SECNO=	98.400 PROFIL 98.400 PROFIL		CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
WARNING SECNO=	99.330 PROFIL	.E= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARNING SECNO=	107.900 PROFIL	.E= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE

ø

ŧ


428

- - -

A Second

D.

431

Appendix G

LACDPW 2022 Hydraulic Study for the Malibu Canyon Road Bridge Replacement

Malibu Canyon Road Bridge Location Hydraulic Study Report

Prepared by:

Los Angeles County Public Works Stormwater Engineering Division Hydrology & Hydraulics Section

April 2022

REGISTERED CIVIL ENGINEER CERTIFICATION

This Location Hydraulic Study has been prepared by or under the direction of the following Registered Civil Engineer. The undersigned attests to the technical information contained herein and the qualifications of any technical specialist providing engineering data upon which recommendations, conclusions, and decisions are based.

Martin Araiza, P.E. Registered Civil Engineer C61849 Registration Expires 06/30/2023

Table of Contents

1	INT	FRODUCTION	.1
	1.1	PURPOSE	.1
	1.2	BACKGROUND	.1
	1.3	EXISTING BRIDGE	.2
	1.4	PROPOSED BRIDGE	.3
2	WA	ATERSHED CHARACTERISTICS	.4
3		DROLOGY	
	3.1	FEMA FLOWRATES	.5
	3.2	LACPW FLOWRATES	.6
4	HE	C-RAS MODEL	.7
	4.1	EXISTING AND PROPOSED BRIDGE	.7
5	HY	DRAULIC RESULTS	13
	5.1	EXISTING AND PROPOSED BRIDGE RESULTS	
	5.2	FLOODPLAIN IMPACT ASSESSMENT	15
6	RE	FERENCES	18

APPENDIX A APPENDIX B APPENDIX C

Table of Figures

Figure 1.1 – Aerial Overview of the Project Site	2
Figure 1.2 – Side View of the Existing Bridge	2
Figure 1.3 – Typical Cross Section of the Existing Bridge	3
Figure 1.4 – Side View of the Proposed Bridge	3
Figure 1.5 – Typical Cross Section of the Proposed Bridge	4
Figure 2.1 – Malibu Creek Watershed.	5
Figure 3.1 – Aerial Overview of Flood Insurance Rate Map of Project Site by	
FEMA	6
Figure 4.1 – Aerial Overview of the Combined 3-ft DEM & Survey Terrain	8
Figure 4.2 – List of the Roughness Coefficients Determined	9
Figure 4.3 – Aerial Imagery of the Upstream Portion of Malibu Creek (Top) vs.	
Field Inspection Images of the Upstream Portion of Malibu Creek	
(Bottom)	10
Figure 4.4 – Delineation of Study Area by Varying Roughness Coefficients	11
Figure 4.5 – Cross-Section View of the Existing Bridge in HEC-RAS	12
Figure 4.6 – Cross-Section View of the Proposed Bridge in HEC-RAS	12
Figure 5.1 – Flood Limits Based on HEC-RAS Analysis for FEMA 100-yr Flow	
Rate	14

List of Tables

Table 1 – List of FEMA Flowrates Used in Hydraulic Study	6
Table 2 – List of LACPW Flowrates Used in Hydraulic Study	
Table 3 – Summary of HEC-RAS Results for FEMA & LACPW Flow Rates on	
the Existing Bridge (3-Span) vs. the Proposed Bridge (2-Span)	

1 INTRODUCTION

The Los Angeles County Public Works (LACPW) has secured engineering funds through the Federal Highway Administration for the retrofit of the Malibu Canyon Road. Preparation of this Location Hydraulic Study is required to demonstrate that the proposed bridge does not pose any adverse risk and does not increase the impacts of flooding.

1.1 PURPOSE

The purpose of this report is to

- 1) present methodology and results of a hydraulic analysis comparing the impacts of the existing bridge Malibu Canyon Road Bridge and proposed retrofit bridge over Malibu Creek.
- 2) examine the existing floodplain and ascertain the impacts of the proposed retrofit Malibu Canyon Road Bridge with the base 100-year flood.

1.2 BACKGROUND

The LACPW is proposing to retrofit the existing Malibu Canyon Road Bridge with the same roadway alignment and roadway profile across Malibu Creek. The location of Malibu Canyon Road Bridge is approximately 130 feet south of the intersection of Piuma Road and Malibu Canyon Road and is positioned at the Latitude and Longitude coordinates of 34°04'53.8"N, 118°42'15.5"W respectively, as seen at the pin marker in *Figure 1.1*.

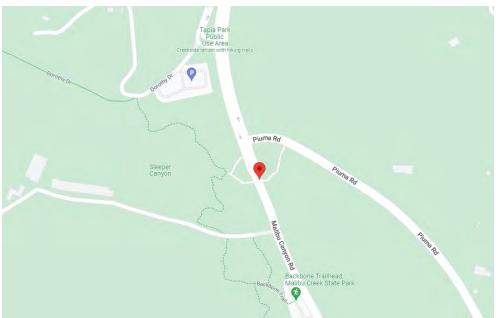


Figure 1.1 – Aerial Overview of the Project Site

All elevations in this report are in U.S. Customary units and are based on the NAD 1983 State Plane California V FIPS 0405 horizontal datum and North American Vertical Datum of 1988 (NAVD 88). The existing bridge was constructed using the National Geodetic Vertical Datum of 1929 and needed to be translated to NAVD 88 to be compatible. The web-based VERTCON program, developed by the National Geodetic Survey, was used to convert between the different vertical datums used.

1.3 EXISTING BRIDGE

The existing bridge's (*Figure 1.2*) length is 212' long, with a width of 32' 2" wide, and has a 3-span bridge design with a pier thickness of 1.5'. The abutments and wing walls of the bridge were constructed with reinforced concrete. *Figure 1.3* shows a typical section view as described in the provided 1952 bridge plans.

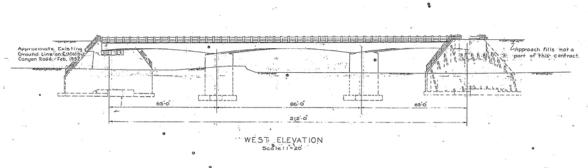


Figure 1.2 – Side View of the Existing Bridge

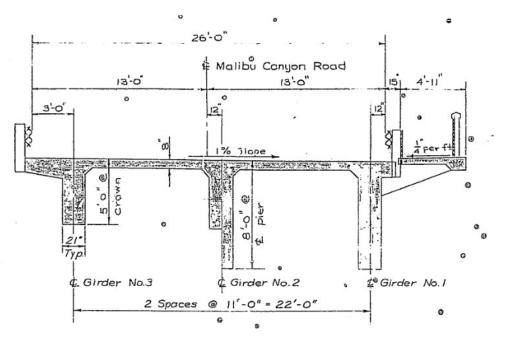


Figure 1.3 – Typical Cross Section of the Existing Bridge

1.4 PROPOSED BRIDGE

The proposed bridge (*Figure 1.4*) is to be 270' long, 57' wide, and will have a 2-span design with a proposed pier thickness of 2'. The reinforced concrete abutments and wing walls of the existing bridge are to remain and not be removed. *Figure 1.5* shows a typical section view as described in the provided 2019 bridge plans.

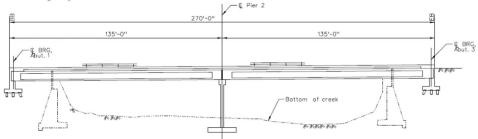


Figure 1.4 – Side View of the Proposed Bridge

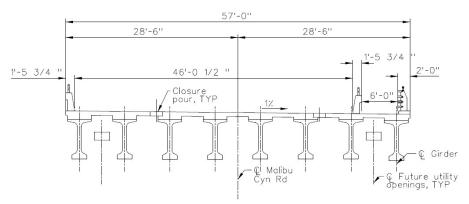


Figure 1.5 – Typical Cross Section of the Proposed Bridge

2 WATERSHED CHARACTERISTICS

The Malibu Creek Watershed covers approximately 110 square miles and is located at the northwestern end of Los Angeles County and the southern end of Ventura County. Roughly 80% of the Malibu Creek Watershed is open space with very few settlements and residences situated within its border. Much of this open space is under jurisdiction of the National and State Parks. The topography of the watershed includes steep ravines and densely vegetated hillsides. The watercourses in the watershed are primarily natural streams, with little flow during the summer months. Flow from the watershed directly discharges into the Pacific Ocean as seen in *Figure 2.1*.

The Malibu Canyon Road Bridge is located just upstream of the confluence of Cold Canyon Creek with Malibu Creek. The tributary drainage area corresponding to the project location is approximately 97.2 square miles.

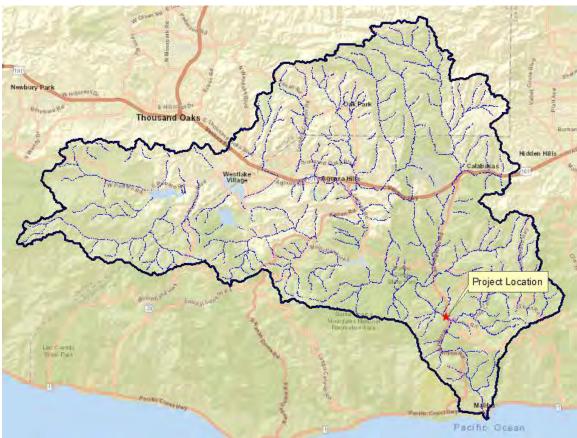


Figure 2.1 – Malibu Creek Watershed.

3 HYDROLOGY

3.1 FEMA FLOWRATES

The latest Flood Insurance Rate Map (FIRM) by FEMA (FEMA #06037C1529G, 12/21/2018) for Los Angeles County shows that the Malibu Canyon Road Bridge over Malibu Creek falls under FEMA Zone A as seen in *Figure 3.1*. The published FEMA Flood Insurance Study (FIS) provides summary tables depicting flood event discharges as well as roughness coefficients of the terrain for certain channels and canyons within Los Angeles County. It is important to note that there are no defined Base Flood Elevations for this location of Malibu Creek. The full FIRM can be found in Appendix A.

Table 1 contains the FEMA FIS published peak discharges for the 10-, 50-, 100-, and 500-year flood events. There are no published discharges for the 200-year flood. The 50-year and the 100-year floods are defined as the design and base floods, respectively.

Figure 3.1 – Aerial Overview of Flood Insurance Rate Map of Project Site by FEMA

Table 1 – List of FEMA Flowrates Used in Hydra	aulic Study
--	-------------

Flood Frequency	10-Year	50-Year	100-Year	500-Year
Discharge, cfs	14,183	31,648	40,544	63,934

3.2 LACPW FLOWRATES

A 1965 hydrology study by LACPW resulted in a Capital Flood of 41,800 cfs. The Capital Flood is defined as the runoff produced by a 50-year frequency design storm falling on a saturated watershed. A revised hydrology study was completed by LACPW in 2007 for Malibu Creek and was based on the Modified Rational Method available within the Watershed Modeling System program. The Malibu Creek Watershed is mostly undeveloped and subject to burning from wildfires. As a result, the revised study accounted for the increase in flow due to the effects of a burned watershed. Burned watersheds contribute debris to the runoff. Therefore, the burned flow rates were bulked to reflect increases in runoff volumes and peak flows related to the inclusion

and transport of sediment and debris. *Table 2* lists the LACPW flow rates that were used in this hydraulic analysis.

Table 2 – List of LACPW Flowrates Used in	Hvdraulic Study

Flood Event	1965 Capital	2008 Burned	2008 Burned &	
	Flood	Flow Rate	Bulked Flow Rate	
Discharge, cfs	41,800	41,656	64,600	

4 HEC-RAS MODEL

4.1 EXISTING AND PROPOSED BRIDGE

The U.S. Army Corps of Engineers' HEC-RAS 5.0.7 computer program was used to perform a steady-state one-dimensional hydraulic analysis. A field survey was taken around the proximity of the bridge and merged with a 3-foot spatial resolution Digital Elevation Model (DEM) derived from Light Detection and Ranging (LiDAR) data collected in 2015 and 2016 by the Los Angeles Regional Imagery Acquisition Consortium (LAR-IAC). This provided the terrain necessary for the hydraulic model. Bank lines, flow paths, and cross-sections were then drawn to configure and capture the natural shape of Malibu Creek. As shown in *Figure 4.1*, the length and extent of the hydraulic analysis started 4,200 feet upstream of Malibu Canyon Road Bridge and extended 3,800 feet downstream of the bridge.

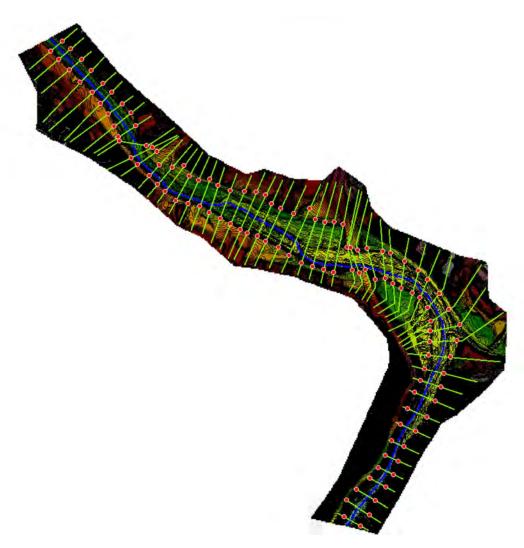


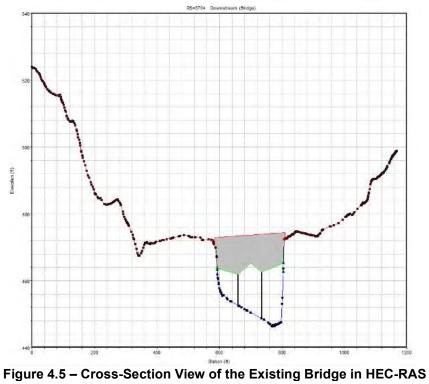
Figure 4.1 – Aerial Overview of the Combined 3-ft DEM & Survey Terrain

For the analyses, the roughness coefficients (n-value) that were inputted for the left bank, right bank, and channel are shown in *Figure 4.2*. The determination of the n-values came from a combination of comparing historical aerial overview imagery and field site inspections (*Figure 4.3*) with known n-values ranges from past report studies. *Figure 4.4* provides an overview of the project area delineated into various sections according to varying terrain roughness factors present (ex: vegetation levels, building facilities, road, etc.). Each section represents a different n-value.

Malibu Canyon Road Bridge Location Hydraulic Study Report

er: River 1	🕺 🛅 🛍 🔽 Edit Interpolated	XS's Channel n Values have a light green		
ach: Reach 1	All Regions	✓ background		
elected Area Edit Options				
Add Constant Multiply Facto	r Set Values Replace	Reduce to L Ch R		
			1	
River Station	Frctn (n/K)	n #1 0.03	n #2 0.05	n #3
2 7974	n	0.03	0.05	0.03
3 7809	n	0.03	0.05	0.03
4 7637	n	0.03	0.045	0.03
5 7456	n	0.09	0.07	0.03
5 7313	n	0.09	0.07	0.03
7 7161	n	0.09	0.07	0.03
3 7016	n	0.09	0.07	0.03
9 6884	n	0.07	0.07	0.07
0 6718	n	0.05	0.015	0.09
1 6582	n	0.06	0.045	0.09
2 6490	n	0.06	0.045	0.09
3 6325	n	0.06	0.045	0.09
4 6195	n	0.09	0.04	0.09
6081	n	0.08	0.04	0.09
5 5932	n	0.07	0.04	0.09
7 5801	n	0.07	0.04	0.09
3 5677	n	0.07	0.04	0.03
5560	n	0.06	0.045	0.03
5404	n	0.07	0.045	0.03
1 5263	n	0.06	0.045	0.03
2 5137	n	0.05	0.045	0.03
3 5037	n	0.03	0.045	0.03
4 4928	n	0.05	0.045	0.03
4816	n	0.06	0.045	0.03
4665	n	0.05	0.05	0.03
7 4521	n	0.06	0.05	0.03
3 4329	n	0.03	0.05	0.09
9 4201	n	0.03	0.05	0.09
4078	n	0.03	0.05	0.09
1 3962	n	0.03	0.05	0.09
2 3785	n	0.03	0.05	0.09
3 3727 4 3704	n	0.03	0.05	0.05
	Bridge	and the second s	10.00	
5 3647	n	0.03	0.05	0.05
3543	n	0.07	0.06	0.05
7 3409	n	0.05	0.06	0.05
3 3319 9 3205	n	0.05	0.06	0.05
3205	n	0.05	0.06	0.05
1 2926	n	0.05	0.06	0.05
2 2760	n	0.03	0.08	0.05
3 2594	n	0.03	0.08	0.05
4 2447	n	0.03	0.07	0.06
5 2309	n	0.03	0.07	0.06
5 2139	n	0.09	0.05	0.07
7 1957	n	0.09	0.05	0.07
3 1809	n	0.09	0.05	0.03
9 1655	n	0.09	0.04	0.03

Figure 4.2 – List of the Roughness Coefficients Determined



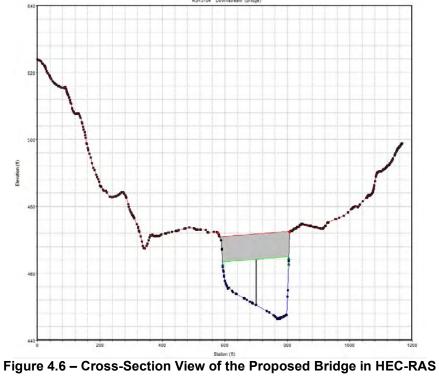

Figure 4.3 – Aerial Imagery of the Upstream Portion of Malibu Creek (Top) vs. Field Inspection Images of the Upstream Portion of Malibu Creek (Bottom)

Figure 4.4 – Delineation of Study Area by Varying Roughness Coefficients

Two bridge scenarios were simulated: the existing bridge and the proposed bridge. *Figure 4.5* represents the existing conditions of the bridge and *Figure 4.6* represents the proposed conditions of the bridge. The proposed bridge is 58 feet longer than the existing bridge and provides additional clearance with its 2-span configuration. The existing and proposed bridge scenarios were both run with the FEMA flowrates and the County flowrates. Results from the respective runs were compared and analyzed to determine impacts between the proposed and existing bridge.

5 HYDRAULIC RESULTS

5.1 EXISTING AND PROPOSED BRIDGE RESULTS

A variety of scenarios consisting of combinations of existing or proposed bridge configurations modeled with various flowrates (FEMA and LACPW flowrates) were examined to determine the hydraulic impacts of the proposed and existing bridge configurations in Malibu Creek. In reviewing the HEC-RAS output results, only the FEMA 10-year flow rate scenario resulted in water surface elevations below the bridge deck for both the existing and proposed bridge. All other flowrate scenarios resulted in water surface elevations above the bridge deck for both bridge cases. However, the configuration span and clearance of the proposed two-span bridge does provide additional capacity within the vicinity of the bridge and results in lower water surface elevations in Malibu Creek for most of the flow rates analyzed.

The results of the hydraulic analysis are provided in *Table 3*. The hydraulic results indicate that the proposed two-span bridge configuration does not increase water surface elevations when compared to the results of the existing three-span bridge. Freeboard was not taken into consideration of the bridge and effects of superelevation for curved alignments were not considered in this study.

The base flood (FEMA 100-year flow rate) inundation extent for the existing and proposed bridges can be seen in *Figure 5.1*.

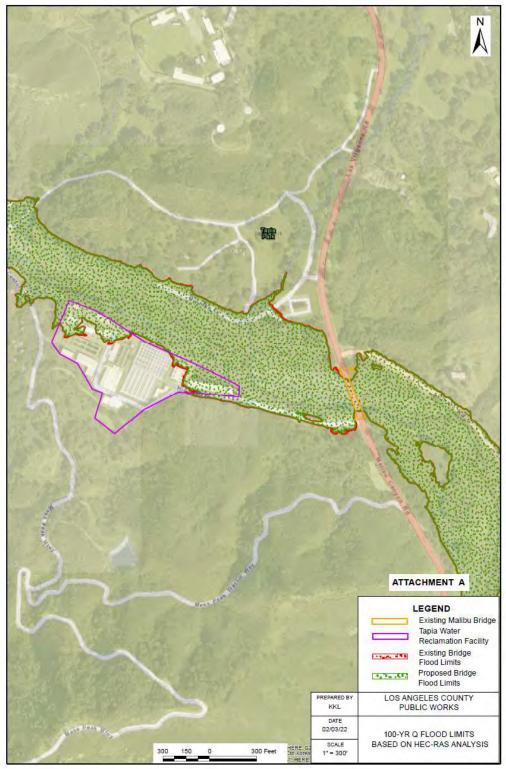


Figure 5.1 – Flood Limits Based on HEC-RAS Analysis for FEMA 100-yr Flow Rate

Table 3 – Summary of HEC-RAS Results for FEMA & LACPW Flow Rates on the Existing Bridge (3-Span) vs. the Proposed Bridge (2-Span)				
FEMA F	lowrate	Water Surface Elevation (ft)	Difference	

FEMA	li iomate			
(cfs)		Existing 3-span Bridge	Proposed 2-Span Bridge	(ft)
10-Year	14,183	463.84	463.84	0
50-Year	31,648	471.84	470.60	-1.24
100-Year	40,544	474.16	473.58	-0.58
500-Year	63,934	476.72	476.84	0.12

LACPW	Flowrate (cfs)	W.S. Ele	Difference	
		Existing 3 span Bridge	Proposed 2 Span Bridge	(ft)
1965 Capital Flood	41,800	474.94	474.18	-0.76
2008 Burned Flowrate	41,656	474.91	474.13	-0.78
2008 Burned & Bulked	64,600	477.25	477.18	-0.07

5.2 FLOODPLAIN IMPACT ASSESSMENT

Per the Federal-Aid Policy Guide 23 Code of Federal Regulations, Chapter 1, Subchapter G – Engineering and Traffic Operations, Part 650 – Bridges, Structures and Hydraulics, Subpart A – Location and Hydraulic Design of Encroachments on Floodplains, Section 650.111 – Location Hydraulic Studies, Paragraph (b), (c), and (d), the Location Hydraulic Study shall include the discussion of the following items.

23 CFR 650.111(b) - Location studies shall include evaluation and discussion of the practicability of alternatives to any longitudinal encroachments

As defined by the Federal Highway Administration (FHWA), a longitudinal encroachment is an encroachment that is parallel to the direction of flow. For example, a highway that runs along the edge of a river is usually considered a longitudinal encroachment.

The flow direction of the floodplain for Malibu Creek is not parallel to the direction of the proposed retrofit bridge. Besides the modification of the existing two piers (3-span bridge) into one pier (2-span bridge) to include additional conveyance to the bridge, the proposed retrofit bridge is not considered a longitudinal encroachment.

23 CFR 650.111(c)(1) - The risks associated with implementation of the action

As defined by the FHWA, risk is the adverse consequences associated with the probability of flooding attributable to an encroachment, specifically including the potential for property loss and the hazard of life. The proposed retrofit bridge helps reduce the water surface elevation along the creek when compared to the existing bridge. The hydraulic results show that the configuration span and clearance of the proposed two-span bridge help provide additional capacity within the vicinity of the bridge. The additional conveyance underneath the bridge helps reduce the potential for overtopping and provides a safer crossing for the public, which helps reduce the risk to property and life. The risk associated with the encroachment resulting from the proposed retrofit bridge is not significant compared to existing conditions.

23 CFR 650.111(c)(2) - The impacts on natural and beneficial floodplain values

As defined by the FHWA, natural and beneficial floodplain values include, but are not limited to: fish, wildlife, plants, open space, natural beauty, scientific study, outdoor recreation, agriculture, aquaculture, forestry, natural moderation of floods, water quality maintenance, and groundwater recharge. The proposed retrofit bridge does not increase water surface elevations and construction work will be conducted in the immediate vicinity of the bridge. The risks associated with the proposed retrofit bridge concerning the impact on natural and beneficial floodplain values are not significant compared to existing conditions.

23 CFR 650.111(c)(3) - The support of probable incompatible floodplain development

As defined by the FHWA, the support of incompatible base floodplain development will encourage, allow, serve, or otherwise facilitate incompatible floodplain development. The proposed retrofit bridge does not increase or create new access routes on developed or undeveloped land in the floodplain and does not increase local traffic. The risk associated with the implementation of the proposed action concerning probable incompatible floodplain development is not significant compared to existing conditions.

23 CFR 650.111(c)(4) - The measures to minimize floodplain impacts associated with the action

The existing bridge for the 100-year flood (Base Flood) event results in overtopping and experiences pressure flow. By raising the road with the proposed retrofit bridge, it will provide a larger conveyance area under the structure. As a result, the water surface elevation is lowered from the existing to the proposed conditions. The proposed retrofit bridge does not worsen the existing bridge's conditions or cause an increase in the floodplain. The risks associated with the implementation of the proposed retrofit bridge concerning the floodplain impacts are not significant compared to existing conditions.

23 CFR 650.111(c)(5) - The measures to restore and preserve the natural and beneficial floodplain values impacted by the action

As defined by the FHWA, natural and beneficial floodplain values include, but are not limited to: fish, wildlife, plants, open space, natural beauty, scientific study, outdoor recreation, agriculture, aquaculture, forestry, natural moderation of floods, water quality maintenance, and groundwater recharge. The proposed retrofit bridge does not result in any identified significant permanent impacts to the natural and beneficial floodplain values. All environmental impacts that occur will be during the construction phase of the project. During the construction phase, best management practices and requirements will be reflected, and be part of the required project permit conditions issued by the regulatory agencies. The risks associated with the implementation of the proposed retrofit bridge regarding the natural and beneficial floodplain values are not significant compared to existing conditions.

23 CFR 650.111(d) - Location studies shall include evaluation and discussion of the practicability of alternatives to any significant encroachments or any support of incompatible floodplain development.

The proposed retrofit bridge replaces the existing 3-span bridge with a 2span bridge capable of allowing for more conveyance of the design flood. The proposed retrofit bridge does not result in new floodplain encroachment. There is no significant encroachment to the Base Flood floodplain.

A Location Hydraulic Study form has been completed based on the hydraulic results and can be found in Appendix B.

6 **REFERENCES**

Hydrology Manual, Los Angeles County Department of Public Works, January 2006.

U.S. Army Corps of Engineers' HEC-RAS River Analysis System Hydraulic Reference Manual Version 5.0, U.S. Army Corps of Engineers, February 2016

Malibu Creek Watershed Hydrology Study, Los Angeles County Public Works, 2008

Proposed Malibu Bridge 60% Plans, Los Angeles County Public Works Design Division, May 2019

Enhanced Watershed Management Program for Malibu Creek Watershed, Revised February 22, 2018

https://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/watershed_management/malibu_creek/MCWEWMP2018-02-22Final(full).pdf

Existing Malibu Bridge As-Builts Plans, Los Angeles County Public Works Design Division, May 1952

Selection of Manning's Roughness Coefficient for Natural and Constructed Vegetated and Non-Vegetated Channels, and Vegetation Maintenance Plan Guidelines for Vegetated Channels in Central Arizona, Jeff V. Phillips and Saeid Tadayon (2007)

Guide for Selecting Manning's Roughness Coefficient for Natural Channels and Flood Plains, George J. Arcement, Jr. and Verne R. Schneider (1989)

VERTCON - North American Vertical Datum Conversion. (2004, March). National Geodetic Survey. April 2020 <u>https://www.ngs.noaa.gov/TOOLS/Vertcon/vertcon.html</u>

FEMA Flood Map Service Center | Welcome! (2022). FEMA. https://msc.fema.gov/portal/home

Flood Insurance Study, Federal Emergency Management Agency, Los Angeles County, California and Incorporated Areas, November 2015

Chapter 17 - Floodplains | Caltrans. (2015, February 4). Chapter 17 - Floodplains. February 2022

https://dot.ca.gov/programs/environmental-analysis/standard-environmentalreference-ser/volume-1-guidance-for-compliance/ch-17-floodplains

Floodplain Management and Protection. (1979, April 23). Department of Transportation. February 2022 <u>https://www.fhwa.dot.gov/engineering/hydraulics/policymemo/order56502.pdf</u>

Appendix H

LACDPW Memorandum dated March 31, 1986, General Files No. 2-15.321/ Level of Flood Protection

THOMAS A. TIDEMANSON, Director HIAM BARMACK, Chief Deputy Director JAMES L. EASTON, Chief Deputy Director WYNN L. SMITH, Chief Deputy Director

COUNTY OF LOS ANGELES

DEPARTMENT OF PUBLIC WORKS

2250 ALCAZAR STREET LOS ANGELES, CALIFORNIA 90035 Telephone : (213) 226-4111

> ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 2418 LOS ANGELES, CALIFORNIA 90051

IN REPLY PLEASE REFER TO FILE:

March 31, 1986

TO WHOM IT MAY CONCERN:

FROM: T. A. Tidemanson Director of Public Works

LEVEL OF FLOOD PROTECTION FILE NO. 2-15.321

The following Level of Flood and Drainage Protection Standards has been adopted by the Department of Public Works:

- I. Capital Flood Protection (Based on a rainfall with a probability of occurrence of once in 50 years).
 - A. Natural watercourses -

All facilities that are constructed in or intercept flood waters from natural watercourses shall be designed for the Capital Flood. These include open channels, closed conduits, bridges, and dams or debris basins (not under State of California jurisdiction). See Attachment A for definition of a watercourse.

B. Floodways - All areas mapped as floodways shall be mapped based on the Capital Flood.

C. Natural Depressions or Sumps -

All facilities that are constructed to drain natural depressions or sumps shall be designed for a Capital Flood. These include channels, closed conduits, retention basins, detention basins, pump stations and highway underpasses. See Attachment A for definition of sumps.

D. Culverts under major and secondary highways.

II. Urban Design Storm (Based on a rainfall with a probability of occurrence of once in 25 years).

The Urban Design Storm shall be the level of protection for all developed areas with other than conditions described in I above.

Level of Protection Page 2 March 31, 1986

The surface capacity of the street or highway may be used up to a water surface level not exceeding the road right of way line. The available surface capacity of the street, however, may be restricted by vehicular or pedestrian traffic requirements see (Attachment A). If a storm drain is required to reduce the water surface level in the street to an acceptable level, it shall be designed for not less than 10-year frequency rainfall flow rates. The storm drain capacity shall be increased where necessary to lower the water surface level for the 25-year frequency storm to within road right of way or to meet other requirements as indicated in Attachment A.

III. Probable Maximum Flood -

All dams (earth embankment, concrete or other materials) that fall under the control of the State of California laws defining dams shall be constructed to safely pass the probable maximum flood as determined from the probable maximum precipitation as defined by the National Weather Service.

See Attachment B for background and other pertinent data.

GJP:yo

Attach (2)

Attachment A - Level of Flood Protection

Definitions:

1. Natural Watercourses -

A natural watercourse is a path along which water flows as a result of natural topographic features. Furthermore, for the purposes of this definition, a natural watercourse drains a watershed greater than 100 acres and also meets one or more of the following conditions:

- a. Experiences flow velocities greater than five feet per second while carrying a Capital Flood.
- b. Has flow depths greater than 1.5 feet while carrying a Capital Flood.
- c. Would have water surface elevations, while carrying a Capital Flood, within one foot of the bases of adjacent habitable structures, if such water surface elevations would result from construction of facilities with less than a Capital Flood capacity.

2. Depression or sump -

A depression or sump is an area for which there is no surface route to outlet flows. Furthermore, for the purposes of this definition, a depression or sump also meets one or more of the following conditions:

- a. Would have a ponded water surface elevation, during a Capital Flood, within one foot of the bases of adjacent habitable structures, if such elevation would result from construction of facilities with less than a Capital Flood capacity. This condition does not apply if there is a surface route for outflow such that the ponded water surface cannot reach the bases of adjacent structures during a Capital Flood.
- b. In a roadway, would have a ponded water surface elevation higher than the elevation of the public right of way line if facilities with less than a Capital Flood capacity were constructed. This condition applies to flows which reach the roadway upstream of the sump and are conveyed to the sump by the roadway.
- c. Has a ponded depth of three feet or greater.

3. Street Capacity -

Maximum street capacity as defined herein is the capacity of the street section to carry flows within street right of way (depth of flow does not exceed either property line). See Highway Design Manual for criteria on quantity of water to be removed from the road surface to provide favorable conditions for vehiclular and pedestrian traffic for particular level of protection. This may increase the level of protection required to be provided by the drain.

Attachment B Level of Flood Protection

Background

The Hydrology SubCommittee has reviewed the level of protection standards of the three former Departments (County Engineer, Road, and Flood) as well as all major agencies in Southern California. In addition, we have met with the County Counsel for legal advice.

The Flood Control District (FCD) in cooperation with the United States Army Corps of Engineers (C of E) has constructed the major flood control facilities in Los Angeles County. These facilities which have channelized the rivers and major streams have been designed for Capital Flood protection and, in the case of the C of E, their Standard Project Flood (SPF). Analysis has indicated that these are comparable levels of protection. In most cases, the SPF equals or exceeds the Capital Flood.

The Los Angeles County Road Department has also used the criterion of the FCD Capital Flood when providing facilities to cross over (bridge) major streams.

The County Engineer required Capital Flood protection in all instances where the FCD had indicated a comprehensive plan channel or had hydrology for a major stream. They required the developers to use FCD flow rates.

The level of protection for urban areas differed between the three Departments. The County Engineer required all new tract developments to use the 25-year frequency level. This could be obtained with a combination of storm drain and surface street capacity. However, if off site capability to accept the excess surface flows was limited, they required the drain exiting the development to carry the 25-year frequency flows. In the majority of the cases, therefore, the developers chose to construct the entire storm drain system for the 25-year frequency flow rates. The Road Department followed the County Engineer requirements for new tract developments. Road Department Cash Contract projects utilized a 10-year frequency protection level obtained by a combination of a storm drain and street surface capacity. The quantity of surface flow varied dependent upon whether the project fell under local or federal requirements. Sumps were designed to the Capital Flood protection level.

The FCD required the 10-year frequency level for storm drains in streets for the four Storm Drain Bond Issue Programs 1952-1970 and/or District projects constructed since the 1970's. Prior to these Storm Drain Bond Issues, the FCD was not involved to any great extent in other than major drainage channels. However, all projects including tributary storm drains in this period were constructed to the 50-year frequency level.

This background suggests that certain standards have been determined to be reasonable levels of protection. Our opinion, based on discussions with County Counsel, is that any lower levels of protection in future projects or approvals would increase the chances of liability should damage occur. Level of Flood Protection Page 2 March 31, 1986

Compatibility to Federal Flood Insurance Requirements

The Federal Insurance Agency (FIA) has set the 100-year flood as their standard. The hydrology is based on historical runoff records to produce the 100-year flow rate. There is no allowance made for future urbanization. In developed areas the standard requires the finished floor elevation of proposed habitable structures to equal or exceed the water surface of the 100-year flood.

Our investigation indicates the recommended levels of protection, Capital Flood and Urban Design Storm, will meet or exceed FIA requirements.

A frequency analysis of the entire County shows that the FIA standard is between the 25-year and 10-year rainfall frequency levels. In most areas, facilities designed for the 10-year rainfall frequency level, when combined with the available street capacity, provide sufficient protection to meet FIA requirements. However, if development of an area changes and FIA restudies the area, 10-year rainfall frequency facilities may prove inadequate.

The proposed 25-year rainfall frequency level will meet FIA standards even if development changes.

The recommended protection levels are based on meeting FIA standards.

Compatibility with Existing Systems

The level of protection standards recommended may have to be modified in cases where the capacity of the conduit into which the proposed drain outlets has limited capacity. Where no relief drain is planned, it is recommended that the drain be restricted to the capacity available at its outlet. In cases where a relief drain is anticipated, the proposed drain is recommended to be sized for the appropriate level of protection.

There are enumerable possible situations, and all cannot be covered in this policy statement. The appropriate Section Head in the Department should review the proposed drainage system and the outlet conditions based on this policy and determine the required level of protection. In situations where the determination may not be clear-cut, the Section Head should recommend to his Division Head that it be referred to the Q Committee for its recommendations to the Director of Public Works.

Economics

We believe the proposed level of protection will not result in a change in cost for either design or construction for Department-constructed drains or developer-constructed drains in a majority of the situations. Level of Flood Protection Page 3 March 31, 1986

The Urban Design Storm (25-year) will not increase requirements for drains required in new developments. The Department-constructed drains may increase in size in areas where the terrain is very flat and street capacity is limited. We have analyzed a number of different situations on prior projects and concluded that design costs would not increase more than one percent and construction costs would increase between two percent and five percent. However, we believe the number of projects affected will be fewer than 20 percent.

There may be some situations where under previous County Engineer policy construction in or intercepting watercourses used a 25-year level, whereas now a 50-year level will be required. It is difficult to determine exactly what percentage of the projects will be affected. In any event, the cost increase for these projects would be approximately 8 percent.

Rainfall vs. Runoff Records

The Committee recommends the continued use of rainfall records to determine the design storm. The major reason for this is that rainfall records are not affected by urbanization, whereas runoff records tend to be poor predictors of future runoff in areas where development is changing. Although we now have considerable length of runoff records, there has been constant urbanization throughout the record period. In addition, there is continued urbanization in the Santa Clara Valley, Antelope Valley, and certain areas on the south slope of the San Gabriel Mountains and in the West County area.

Discussion of Comments

- Comment: Use a straight 10-year rainfall level of protection for all storm drains in streets.
- Reply: The proposed level of protection should in the majority of the cases result in storm drains designed for 10-year Q's. The proposed level of protection is a combined system of utilizing street capacity and drain. It will in all cases meet Federal Flood Insurance standards. It will not lower present levels of protection required by the County Engineer, whereas a straight 10-year would in some cases.

Comment: The proposed level of protection will increase cost.

Reply: An analysis of drains in a number of different areas indicate that in the majority of the cases, the street sections have adequate capacity for the difference between a 25-year and 10-year Q. In the areas with flat street slopes or other areas where street capacity may be limited for one reason or another, the increased costs for the drain and appurtenances range between two percent and five percent. Design costs will be increased approximately one percent. Level of Flood Protection Page 4 March 31, 1986

Comment: We feel you must prepare a precise policy regarding the handling of the situation where the new hydrology method produces flows that are greater than the outletting system's capacity. We feel the new method will produce greater Q's in almost all cases based on the results of hydrology reviews made during the Bond Issue Programs. As you are aware, the Bond Issue Programs guideline was to accept flow rates based on the County Engineer's hydrologic method when the resultant Q's were as much as 15 percent lower than the Q's generated by the District's short-cut rational It is recommended that you adapt this 15 percent figure method. as a guideline for future hydrologic studies.

Reply: A policy regarding the compatibility of a proposed drain to an existing outletting system is given in this statement and if interpetation is required, it will be given by the appropriate Department Section Head. Difficult situations will be referred to the Q Committee for its recommendation to the Director. The 15 percent guideline would no longer be appropriate. It was used up through the 1964 Bond Issue Projects. At that time, there was a difference in some coefficients used, and on very large areas the Q's near the end of the drain using the County Engineer method were sometimes lower than the District method. However, the Q's at the upper end of the drain were usually larger than the District's using the County Engineer method.

Will a 10-year rainfall frequency drain result in acceptable Comment: flooding levels during the FIA 100-year flood? Will the flooding levels be below finished floor elevations? Can we use a standard that will adjust the drain size to account for this if necessary?

Our investigation indicates that in most cases 10-year drains will. give protection such that flooding levels will not exceed FIA standards. A frequency analysis when considering the entire County indicates that the FIA flooding levels are between the 10-year and 25-year rainfall frequency flooding levels. A standard could be developed to adjust drain sizes to meet FIA standards, however, it would be more complex. It also would not produce uniform results throughout the County.

Reply:

Level of Flood Protection Page 5 March 31, 1986

Summary

The Hydrology SubCommittee has evaluated all the comments received on the proposed level of protection policy. After careful consideration of all points of view, we believe we have recommended a policy that is in the best interests of the public and the Department. We believe this policy will provide adequate flooding protection for Los Angeles County with insignificant, if any, increase in costs and minimize future Department liability.

GJP:yo

DATE:June 5, 2023TO:JPA Board of DirectorsFROM:Engineering and External Affairs

SUBJECT: Pure Water Project Las Virgenes-Triunfo: Update on Public Outreach Plan

SUMMARY:

Effective public outreach is a critical component for the success of the Pure Water Project Las Virgenes-Triunfo. In February 2017, a Public Outreach Plan was developed for the project and has since been implemented. The Public Outreach Plan has been updated several times with the latest update presented to the JPA Board on March 2, 2020. Most components of the plan have been completed or are on-going efforts. New items have been added to the plan over the past several years, including but not limited to the special tasting events. As with any large, multi-year project, it is important to periodically gauge progress and make necessary adjustments to outreach efforts to ensure continued success.

At the Board meeting, staff will provide an overview of the progress to-date on implementation of the Public Outreach Plan for the Pure Water Project Las Virgenes-Triunfo.

RECOMMENDATION(S):

Receive and file an update on the public outreach plan and provide feedback on new or additional outreach activities that should be considered for the Pure Water Project Las Virgenes-Triunfo.

ITEM BUDGETED:

Yes

FINANCIAL IMPACT:

There is no financial impact associated with this action.

DISCUSSION:

In collaboration with staff, Katz and Associates developed a Public Outreach Plan for the Pure Water Project Las Virgenes-Triunfo. The plan was initially presented to the JPA Board on February 6, 2017, and provides a roadmap for conveying timely, accurate, and clear information about the project to local leaders, stakeholders and customers. The main categories of the plan include data collection and research, informational materials and branding, stakeholder engagement, media/social media, partnerships, and tracking and

measurement.

Updates have been periodically provided to the JPA Board with the latest on March 2, 2020. Since the last update, outreach efforts have been focused primarily on conducting tours of the Pure Water Demonstration Facility, which was inaugurated on September 11, 2020, and holding special tasting events. New items have been added to the plan over the past several years, including but not limited to special tasting events in 2022 for Pure Coffee Brew, Pure Gelato/Sorbet and Pure Beer, which recently won the California Association of Public Information Officials *Epic Award for Communication or Marketing Plans and Campaigns*.

Additional outreach efforts have also revolved around the CEQA/environmental review process and adoption of the Programmatic Environmental Impact Report in December 2022. Most items in the plan have either been completed or are on-going. The Pure Water Project Outreach Plan Update (Attachment A) summarizes the status of the various elements organized by each of the main categories in the plan. New elements of the plan are highlighted and shown in italics, including the following:

- 2.17 Constituents of Emerging Concern (CEC) Fact Sheet (see Attachment C)
- 3.9 Event Tabling with Beer Tasting
- 3.10 Special Tasting Event at Demonstration Facility
- 4.8 Full Circle Podcast Series
- 5.1 City of Thousand Oaks (partnership to augment water supply)
- 5.2 City of Agoura Hills (partnership to augment water supply)
- 5.3 MWD, WateReuse, Los Angeles Department of Water and Power, et al.

(partnerships to receive endorsement from Los Angeles County Medical Association)

As part of the plan implementation, staff has kept track of the various outreach activities that are summarized in Attachment B. Following are some of the highlights since the Pure Water Demonstration Facility was completed:

• Over 126 tours of the Demonstration Facility, with approximately 1,853 attendees since September 11, 2020, including but not limited to:

- o 5 "Taste The Water, Explore The Garden" Tours
- o 31 Pure Water School Tours totaling 730 students
- o 57 Pure Water Tours (General Public)

o 26 Pure Water Tours for consultants, water boards, LVMWD and TWSD staff, and elected officials and their staff

- o 5 Pure Water Tours with special tasting events (Coffee and Sorbet)
- o 2 Earth Day Tours (2021 and 2022)

• 3 special tasting events (Pure Coffee, Pure Gelato/Sorbet, Pure Beer) with a total of 545 attendees

- 8,871 website visits for OurPureH2o.com (since April 2022)
- 103 social media posts totaling 28,417 reaches (since July 2021)
- 11,318 digital media advertisement reaches (since July 2021)
- 11 newspaper ad placements (since July 2021)

The main observation or takeaway with regards to the current plan is that, while much has been accomplished to-date, there is still a significant amount of work to be done to inform and

educate the public about the Pure Water Project Las Virgenes-Triunfo. Based on the latest results of an LVMWD customer survey, 46 percent of its customers are aware of the project. However, earlier surveys conducted in collaboration with Pepperdine University in 2020 before the Pure Water Demonstration Facility was completed and available for tours indicated that 53 percent of customers are supportive of the concept of purified recycled water to at least some degree with nine percent unsure and 38 percent either not supportive or uncomfortable with drinking the water. This data reflects a major shift from 20 years ago when the "toilet to tap" campaign dissuaded and incorrectly created negative public sentiment for using purified recycled water as a viable source of drinking water. Surveys conducted by other water agencies indicate that closer to 75 percent of customers are supportive of purified recycled water once they are educated on the concept.

While staff continues with efforts to engage the community and implement on-going items outlined in the plan, additional focus will be placed on outreach efforts in the TWSD/Ventura County area, including speaking engagements and "tabling" events in and around Oak Park. Staff is also preparing for another special tasting event to be held in Fall 2023. Additionally, a podcast series is being recorded called the "Full Circle Podcast," focusing on the Pure Water Project Las Virgenes-Triunfo. The first few episodes are available to view on-line at www.ourpureh2o.com and will also be available on popular apps including Audible, Spotify and Apple Music.

It has been over two years since the 2020 JPA Community-Wide Survey was conducted, which provided insight on the level of acceptance of purified recycled water from JPA customers before tours were available at the Pure Water Demonstration Facility. Since there has been significant outreach since that time, staff intends to conduct a follow-up survey to see how these efforts have helped garner support for the project. The survey is tentatively scheduled to be conducted towards the end of this calendar year.

GOALS:

Sustain Community Awareness and Support

Prepared by: Joe McDermott, Director of Engineering and External Affairs

ATTACHMENTS:

Attachment A - Public Outreach Plan Attachment B - Pure Water Outreach Tracking Matrix Attachment C - CEC Brochure and Fact Sheet

ATTACHMENT A

Pure Water Outreach Plan (updated 5.18.23)

		i i i i i i i i i i i i i i i i i i i		
			Date Completed/	
		6	Target	
	Element	Status	Completion	Notes
-	ata Collection and Research	Consultated	Cast 2010	Kete regent data d Cast 10, 2010
	In-Depth Interviews	Completed	Sept. 2016 Summer/Fall 2021	Katz report dated Sept. 16, 2016
	2nd round interviews Online Secondary Research	Pending Started	On-going	includes participation in WateReuse
1.2	onine secondary research	Starteu	Oll-going	Modifications due to COVID, Preliminary
1.3	Formalized Survey(s) (Random throughout JPA Service Area)	Progress	Fall 2021	results presented to JPA 3/1/21
	Design and Build Demonstration Facility	Completed	Sept. 2020	Grand Opening Sept. 11, 2020
				Initiated with Taste the Water / Tour the
1.5	Pre and Post Demonstration Facility Tour Surveys	Progress	On-Going	Garden
2.0 - In	formational Materials and Branding			
2.1	Branding (logo and theme line)	Completed	October 2016	updates as needed
2.2	Malibu Creek Watershed Brochure	Completed	Feb. 2016	
	Pure Water Project Brochure	On-Going	on-going	last update fall 2022
	Fact Sheets	On-Going	on-going	CEC fact sheet spring 2023
	Key Message Graphics/Infographics	On-Going	On-Going	Path to Pure Water Graphic
	Frequently Asked Questions (FAQs)	Completed	On-going	updates as needed
	Presentation Template (various modules for various audiences)	Completed (different versions)	Varies	updates as needed
	Quick Facts Card (for use by field personnel and at presentations)	Started	Summer 2023	
	Animated Videos	Completed	Sepember 2021	utilized WateReuse videos
	Material Translated into Spanish	Not Started Started	TBD On going	Select Material Only incorporated into Current Flow
	Newsletter/E-Newsletter Website (www.ourpureh2o.com) - standalone	Completed	On-going Feb. 2019	
	Utility Branding Network Initiative	in progress	On-Going	ourpureh2o.com - updates as needed e-mails to influential people
	Pure Water Lunch Pale	Completed	March 2019	
	Demonstration Project Orientation Video	Completed	November 2019	
	Demonstration Facility Visitor Experience	On-Going	On-going	
	CEC Fact Sheet	Completed	Completed	
	akeholder Engagement	,		
				liaisons are the GM and Board of Directors.
				Alternates (EEA Director and Public Affairs
3.1	Identify Project Liaison	Completed	varies	Manager)
3.2	Key Stakeholder Briefings	Started	On-going	focus on Ventura County side for 2023
3.3	One-on-One Meetings	Started	On-going	
	Speakers Bureau / Speaking Events	Started	On-going	focus on Ventura County side for 2023
3.5	Events and Forums	Started	On-going	focus on Ventura County side for 2023
	Pure Water Beer Brew-Off	Completed	November 2022	
	Pure Water Coffee Brew	Completed	May 2022	
3.8	Dura Water Calata		July 2022	
	Pure Water Gelato	Completed	,	
				potentially Reyes Adobe Days & Pumpkin
	Event Tabling with Beer Tasting	Planning	October 2023	Festival
3.10	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility			
<u>3.10</u> 4.0 - M	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media	Planning Planning	October 2023 November 2023	Festival Pizza (crust), sparkling water/soda, etc
3.10 4.0 - M 4.1	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach	Planning	October 2023	Festival
3.10 4.0 - M 4.1	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy	Planning Planning	October 2023 November 2023	Festival Pizza (crust), sparkling water/soda, etc
3.10 4.0 - M 4.1	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable	Planning Planning Started	October 2023 November 2023 On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest
3.10 4.0 - M 4.1 4.2	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse	Planning Planning	October 2023 November 2023	Festival Pizza (crust), sparkling water/soda, etc
3.10 4.0 - M 4.1 4.2	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable	Planning Planning Started	October 2023 November 2023 On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest
3.10 4.0 - M 4.1 4.2	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media	Planning Planning Started	October 2023 November 2023 On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest
3.10 4.0 - M 4.1 4.2 4.3	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate	Planning Planning Started Started	October 2023 November 2023 On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest
3.10 4.0 - M 4.1 4.2 4.2	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage	Planning Planning Started Started	October 2023 November 2023 On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest
3.10 4.0 - M 4.1 4.2 4.3	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable	Planning Planning Started Started	October 2023 November 2023 On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions
3.10 4.0 - M 4.1 4.2 4.3 4.3	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Tedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the	Planning Planning Started Started Started	October 2023 November 2023 On-going On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse
3.10 4.0 - M 4.1 4.2 4.3 4.4 4.4	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership	Planning Planning Started Started Started	October 2023 November 2023 On-going On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video
3.10 4.0 - M 4.1 4.2 4.3 4.4 4.4	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on	Planning Planning Started Started Started Started	October 2023 November 2023 On-going On-going On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media	Planning Planning Started Started Started Started Started Started Started	October 2023 November 2023 On-going On-going On-going On-going On-going On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.6 4.7	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media Rapid Response Program	Planning Planning Started Started Started Started Started Started Started Not Started	October 2023 November 2023 On-going On-going On-going On-going On-going On-going Fall 2021	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7 4.8	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media Rapid Response Program Full Circle Podcast Series	Planning Planning Started Not Started	October 2023 November 2023 On-going On-going On-going On-going On-going Fall 2021 Spring 2023	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7 4.8 5.0 - Pa	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media Rapid Response Program Full Circle Podcast Series artnerships	Planning Planning Started	October 2023 November 2023 On-going On-going On-going On-going On-going Fall 2021 Spring 2023 On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on Facebook, utilize digital media platform
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7 4.8 5.0 - Pa 5.1	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media Rapid Response Program Full Circle Podcast Series Cartnerships City of Thousand Oaks	Planning Planning Started Started	October 2023 November 2023 On-going On-going On-going On-going On-going Fall 2021 Spring 2023 On-going TBD	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on Facebook, utilize digital media platform Los Robles Well / Excess Sewage
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7 4.8 5.0 - Pa 5.1	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility ledia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media Rapid Response Program Full Circle Podcast Series artnerships	Planning Planning Started	October 2023 November 2023 On-going On-going On-going On-going On-going Fall 2021 Spring 2023 On-going	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on Facebook, utilize digital media platform
3.10 4.0 - M 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7 4.8 5.0 - Pa 5.1 5.1 5.2	Event Tabling with Beer Tasting Speical Tasting Event at Demonstration Facility Iedia / Social Media Enhance traditional and social media outreach Provide media with continuously stimulating and newsworthy content related to water supply diversity and indirect potable reuse Cultivate working relationships with local/regional media representatives, bloggers and specialty reporters to facilitate accurate and balanced media coverage Develop short video presentations featuring indirect potable reuse descriptions and benefits that can be shared with the media and stakeholders Engage multicultural publications and media outlets that reach a diverse readership Increase the presence, audience and level of engagement on social media Rapid Response Program Full Circle Podcast Series Cartnerships City of Thousand Oaks	Planning Planning Started Started	October 2023 November 2023 On-going On-going On-going On-going On-going Fall 2021 Spring 2023 On-going TBD	Festival Pizza (crust), sparkling water/soda, etc added Instagram, Nextdoor, Pinterest press-releases after critical JPA decisions Pure Water Project Episodes, WateReuse Video will "boost" high importance items on Facebook, utilize digital media platform Los Robles Well / Excess Sewage

ATTACHMENT B

Pure Water Outreach Tracking Matrix (updated 5.18.23)

Туре	Liason	Audience	Date	~ # Attendees	Notes
Key Stakeholde	r Briefings				
•	Ĩ	Staff of Congressman Ted Lieu	5/3/2017		Ted Lieu's staff
	Pedersen	Hilton Fdn	6/8/2017	2	Pat Madugno, Kathryn Miller
	McDermott	State Senator	4/11/2018	2	Henry Stern and staff
					Annual JPA Washington DC Lobb
	Various	Federal lawmakers and staffers, BOR, EPA	4/2019	20+	Trip
	Slosser	CEQA Scoping Meeting	9/23/2021	10	•
		CEQA/EIR Presentation to City Council City of			
	Slosser	Agoura Hills	8/24/2022	40	
	Slosser	CEQA EIR Hearing	9/8/2022	20	
		CEQA/EIR Presentation to City Council City of			
	Slosser	Westlake Village	9/14/2022	40	
	Slosser	CEQA/EIR Presentation to City of Thousand Oaks	9/27/2022	100	
	Slosser	CEQA/EIR Presentation to Oak Park MAC	9/29/2022	30	
	Slosser	CEQA/EIR Presentation to Oak Park MAC	10/31/2022	30	
					Gave her and her state and DC
	Various	Asm Jacqui Irwin	2/1/2023	7	staff pure water tour
		Calleguas Municipal Water District / staff and			
	Slosser	select Board Members	12/15/2021	15	Tour of Demo Facility
		City of Thousand Oaks / staff and select			
	Slosser	citycouncil members	10/20/2021	5	
					Issued Notice of Preperation,
					Notice of Availability, provided
					copies of the draft report at
					Calabasas, Agoura Hills,
					Westlake Village, Oak Park,
					Hidden Hills Libraries an/or city
					halls, notified over 100 people
	Slosser	CEQA Public Draft Availability	8/22/2022	100+	through email or letter
	Slosser	Division of Drinking Water Staff Tours	3/29/23,	3	Tour of Demo Facility and Tapia
	Wolf	Senator Ben Allen	4/3/2023	3	Gave him and his staff tour
	Wolf	Ventura County Supervisor Jeff Gorell	3/13/2023	8	Meeting at Gorell's Office
Cura aliana Dima a	-		3/13/2023	8	
Speakers Burea	u / Speaking Ev				
		Westlake Lake Management Association	3/21/2017	NR	
		Calabasas HOA	3/29/2017	NR	
		Calabasas Chamber of Commerce Government	4/3/2017	NR	
		League of Women Voters	4/11/2017 4/26/2017	NR	
		Agoura Hills City Council		NR	
		Las Virgenes HOA	5/16/2017	NR	
		Calabasas City Council	5/24/2017	NR	
		Sierra Club	5/25/2017	NR	
		County Special District's Association	6/6/2017	NR	
		Greater Conejo Chamber Government Affairs	c /o . /o o . =		
		Comm.	6/21/2017	NR	
		Oak Park Municipal Advisory Council	7/25/2017	NR	
L		Metropolitan Water District	7/26/2017	1	Carolyn Schaffer
ļ		Lt. Governor's Office	7/26/2017	1	Joey Freeman
		Malibu Sunrise Rotary	9/8/2017	NR	
		Malibou Lake HOA	9/26/2017	NR	
	Pedersen	Kiwanis Club (Thousand Oaks)	5/31/2018	45	
	Pedersen	ACWA Conference	11/28/2018	80	Potable Reuse Panel
	McDermott	Conejo/Las Virgenes Future Foundation	10/24/2019	120	10x10 Speaker Event
					Virtual PWP Presentation
		Cal Cities Environmental Quality Policy			requested by Mayor Pro-tem
	Clark	Committee	1/26/2023	NR	Buckley-Weber
	McNutt/Wolf	Thousand Oaks Rotary Club	3/25/2023	50	

NR – Not Recorded

Pure Water Outreach Tracking Matrix (updated 5.18.23)

Туре	Liason	Audience	Date	~ # Attendees	Notes
vents and	Forums				
		General Public/Influential Persons	3/26/2017	32	Colorado River Aqueduct Tour
		General Public	5/6/2017	NR	Quarterly Tour (Potable Water)
	McDermott	General Public	2/10/2018	36	Quarterly Tour (Wastewater)
	Pedersen	Water ReUse	3/25/2018	NR	Professional Symposium
	McDermott	General Public/Influential Persons	4/14/2018	30	Colorado River Aqueduct Tour
	McNutt	General Public	5/6/2018	39	Quarterly Tour (Potable Water)
		General Public	11/18/2018	28	Quarterly Tour (Potable Water)
	McDermott	General Public/Influential Persons	10/28/2018	35	State Water MWD Insp. Tour
	McNutt	MWD Education and Public Affairs Staff	9/25/2018	6	
	Levitt	Senior Luncheon for Reyes Adobe Days	10/11/2018	50	Brief mention of Pure Water Project
		Parade Float, T-Shirt Giveaway / Fans	10/13/2018	1000+	Reyes Adobe Days
	McDermott	General Public	8/11/2018	20	Quarterly Wastewater Tour
	McNutt	LVMWD Employees	9/19/2018	100	All Hands Meeting
			-, -,		
	McNutt	MWD Public Affairs/Education Group	9/25/2018	6	Pure Water PPT and tour of facilities
			0,00,000	-	
					WaterReuse Communications Committee
	McNutt/McDermott	Other Agencies/Districts persuing Potable Reuse	10/17/2018	100+	shared Pure Water Project info.
	McNutt	General Public/Influential Persons	4/12/2019	38	Colorado River Aqueduct Tour
	Clark	General Public	8/17/2019	30	Quarterly Tour (Wastewater)
	Clark	General Public/Influential Persons	10/27/2019	34	State Water MWD Insp. Tour
	Clark	Elementary Schools	2019	600+	School Education Program
	McNutt	Conejo/Las Virgenes Future Foundation	2/5/2020	60+	Highschool Program
	Clark	General Public	2/8/2020	29	Quarterly Tour (Wastewater)
	Clark		2/8/2020	23	
	McNutt	Tap-In 2019 Forum	11/7/2020	100	Business/Water Forum in Agoura
	IVICINULL	Virtual Tour for Association of Water Agencies	11/7/2020	100	Businessy water Forum in Agoura
	McNutt	(AWA)	7/24/2020	35	
	Wichult	Grand Opening/Ribbon Cutting of Demonstration	7/24/2020	55	
	McNutt	Facility	9/11/2020	50	
	IVICINULL	Facility	9/11/2020	50	
	McNutt	Virtual Tour for Central Coast Chapter WateReuse	9/24/2020	30	
	IVICINULL	Virtual Tour for Central Coast Chapter Wateredse	9/24/2020	50	
	MaNutt	Tan In 2020 (Online Section 1)	11/5/2020	27	Information about Dura Water Draiget
	McNutt McNutt	Tap-In 2020 (Online Session 1) Tap-In 2020 (Online Session 2)	11/5/2020 11/12/2020	33	Information about Pure Water Project Virtual Tour
	Baird	E-Notifications for Community Wide Survey	Summer 2020	8,427	57% Open Rate/498 Responses conducted 3 tours - all attendees went or
	Clark	Dura Water Coffee Draw	F /1 A /2022	145	
	Clark	Pure Water Coffee Brew	5/14/2022	145	one conducted 5 tours - all attendees
	Clark	Dura Water Calata	0/12/2022	250	attended
	Clark	Pure Water Gelato	8/13/2022	250	attended
	ci	Presentation at WateReuse California 2022 Annual	0/40/2022		
	Slosser	Conference	9/12/2022		
					played future of water video and
		Dura Matan Daar Daar	11/10/2022	450	discussed role of water in products like
	Clark	Pure Water Beer Brew	11/10/2022	150	beer
		Presentation of Pure Water Project to Cental Coast	- /- /		
	Slosser	Chapter of WaterReuse	3/2/2023	NR	
			count 9.11.20	total tours:	
			through 4.4.23	126+, person	includes general public, consultants, and
	Clark	Demonstration Plant Tours		count: 1853	students (730)

CONTNUED NEXT PG.

Pure Water Outreach Tracking Matrix (updated 5.18.23)

Туре	Liason	Audience	Date	~ # Attendees		Notes
Newspaper Prin	t Advertisements	Author/ Paper				
	McNutt	Agoura Hills Acorn	7/15/2021			
	McNutt	Las Virgenes Enterprise	7/15/2021			
	McNutt	Agoura Hills Acorn	7/22/2021			
	McNutt	Calabasas Chamber Ad	9/10/2022			
	McNutt	California Water	9/15/2021			
	McNutt	Las Virgenes Enterprise	3/10/2022			
	McNutt	Agoura Hills Acorn	3/11/2022			
	McNutt	Agoura Hills Acorn	7/24/2022			
	McNutt	Las Virgenes Enterprise	8/4/2022			
	McNutt	Agoura Hills Acorn	8/5/2022			
	McNutt	Agoura Hills Acorn	8/12/2022			
Diaital Madia Aa			0,12,2022	#Posts	# Decel	
Digital Media Ac			7/4/24 0/20/24		# Reach	
	Baird		7/1/21-9/30/21	NR	883	
	Baird		10/1/21-12/31/21	NR	697	
	Baird		1/1/22-3/3/22	NR	867	
	Baird		4/1/22-6/30/22	NR	1,689	
	Baird		7/1/22-9/30/22	NR	2,403	
	Baird		10/1/22-12/31/22	NR	1,861	
	Baird		1/1/23-3/31/23	NR	2,918	
		Totals (Digital Media)			11,318	
Social Media Pos	sts			#Posts	#Reach	
acebook/Instagrar	Baird		7/1/21-9/30/21	11	1,370	
	Baird		10/1/21-12/31/21	3	15	
	Baird		1/1/22-3/3/22	8	731	
	Baird		4/1/22-6/30/22	10	2,598	
	Baird		7/1/22-9/30/22	14	8,472	
	Baird		10/1/22-12/31/22	6	1,157	
	Baird		1/1/23-3/31/23	2	661	
- witter	Baird		7/1/21-9/30/21	6	2,207	
	Baird		10/1/21-12/31/21	3	549	
	Baird		1/1/22-3/3/22	5	933	
	Baird		4/1/22-6/30/22	4	904	
	Baird		7/1/22-9/30/22	8	1,229	
	Baird		10/1/22-12/31/22	4	478	
	Baird		1/1/23-3/31/23	1	605	
inkedin	Baird		7/1/21-9/30/21	2	2,038	
	Baird		10/1/21-12/31/21	1	171	
	Baird		1/1/22-3/3/22	2	942	
	Baird		4/1/22-6/30/22	1	474	
	Baird		7/1/22-9/30/22	2	661	
	Baird		10/1/22-12/31/22	4	860	
	Baird		1/1/23-3/31/23	4	1,300	
outube	Baird		7/1/21-9/30/21	0	0	
	Baird		10/1/21-12/31/21	1	32	
	Baird		1/1/22-3/3/22	1	30	
	Baird		4/1/22-6/30/22	0	0	
		1	7/1/22-9/30/22	0	0	
	Baird					
	Baird					
	Baird Baird Baird		10/1/22-12/31/22 1/1/23-3/31/23	0	0	

Should I be worried about pharmaceuticals and other CECs in purified recycled water?

The short answer is

NO

Testing at the Pure Water Demonstration Facility has shown that advanced purified recycled water is safe for our customers.

Constituents of Emerging Concern and Advanced Water Purification

472

Constituents of Emerging Concern (CECs) are typically unregulated chemicals that include hormones, pharmaceuticals, and personal care products. The National Research Council (NRC) published a 2012 study that examined the presence of CECs in purified recycled water¹. A similiar study was conducted by Stanford University in 2022². These and other studies like them consistently confirm the safety of water purified by advanced treatment systems, like the one being proposed by Las Virgenes-Triunfo. When compared to conventional water supplies, including mountain runoff and groundwater, purified recycled water is repeatedly shown to be the highest quality water.

The advanced treatment process proposed by the Las Virgenes - Triunfo Joint Powers Authority (JPA) has undergone extensive testing at the Pure Water Demonstration Facility located at the Las Virgenes Municipal Water District Headquarters in Calabasas, California. This Facility takes water that has been treated at the JPA's Tapia Water Reclamation Facility for non-potable reuse and purifies it through advanced treatment. The results show that advanced treatment completely removed CECs, removed them to levels that could not be detected, or reduced CECs to levels so low that there would be NO health impact. The same treatment process has been used for many years at other locations throughout the world.

 $1\,$ – https://nap.nationalacademies.org/catalog/13303/water-re-use-potential-for-expanding-the-nations-water-supply-through

Parts Per Million (milligrams per liter)

3 drops added to a 42-gallon rain barrel

Parts Per Billion

(micrograms per liter)

1 drop added to a large tanker truck

Parts Per Trillion

(nanograms per liter)

10 drops added to the Rose Bowl filled with water

Parts Per Quadrillion

(picograms per liter)

2 teaspons added to [°] the Great Salt Lake Expert research teams and public health professionals have concluded that the concentrations of CECs in purified reycled water, if even detectable, are orders of magnitude lower than a biological response or health impact. For example, acetaminophen (Tylenol) was detected in one sample after advanced treatment at 8.4 nanograms per liter or parts per trillion. To put this into perspective, knowing that one dose of acetaminophen is typically 500 milligrams, a person would need to drink the equivalent of 24 Olympic-size swimming pools all at once to receive one dose – which of course is not possible! The purification process is so complete that minerals need to be added back into the

A complete list of CECs and test results can be located and reviewed by accessing the QR code below and proceeding to page 181 of the report:

purified water before its use.

This report can also be accessed at **OurPureH2O.com/PerformanceReports**

20

Pharmaceuticals and Personal **Care Products (PPCP)**

Hormones

Proven Technology

PFAS, a class of compounds commonly referred to as "forever chemicals," includes two regulated and closely scrutinized chemicals: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Although PFAS are starting to be regulated, these compounds are still considered an "emerging concern."

PFOA and PFAS are proposed for drinking water standards. PFOA and PFAS were NOT detected in advanced treated water.

degradation of these products.

The JPA's advanced treated water was tested for a suite of PPCPs. Most pharmaceuticals were NOT detected in the advanced treated water

Some pharmaceuticals were detected at extremely low levels in the advanced treated water. Their detection at such low levels does not constitute a health and safety concern. For example, Naproxen was detected in one sample at 0.4 parts per trillion, which is 500,000 times less than the concnernation needed to have any impact on the human body.

Estrogen is a compound that was tested for in the advanced treated water. Testing for estrogen provides evidence of the ability for advanced treatment to remove a broader group of hormones. Estrogen was NOT detected in the advanced treated water.

The Pure Water Project will use a stateof-the-art advanced water purification process to transform recycled water into drinking water. This proven process has been used throughout California, the U.S., and internationally for more than a decade.

STEP 1 MEMBRANE FILTRATION

Bundles of membrane filters remove large particles hormones and bacteria.

STEP 2

REVERSE OSMOSIS

High pressure filters remove smaller bacteria & viruses, salts. pharmaceuticals, pesticides, and PEAS from the water.

ADVANCED OXIDATION

UV light and schlorine is used to break down any remaining contaminants and disinfect water.

PURE WATER

The final product is a highly purified water that exceeds federal and state drinking water standards.

PFAS can be found in many consumer products, including non-stick cookware and water-proof clothing and enters our water systems through use and

Pharmaceuticals find their way into the wastewater system through human excretion or from flushing them down the drain.

Hormones also enter our water through human excretion.

PFAS

DATE: June 5, 2023

TO: JPA Board of Directors

FROM: Engineering and External Affairs

SUBJECT: Pure Water Project Las Virgenes-Triunfo: Continued Engagement of Independent Advisory Panel

SUMMARY:

On May 4, 2018, the JPA convened an Independent Advisory Panel (IAP) of experts to validate the results of hydrodynamic reservoir modeling and to comment on the feasibility of the Pure Water Project Las Virgenes-Triunfo to meet the state's Surface Water Augmentation (SWA) regulations. The IAP summarized its findings, conclusions and recommendations in a June 26, 2018 memorandum that identified future tasks to be completed by the JPA. The National Water Research Institute (NWRI) prepared a proposal, in the amount of \$77,704, to reconvene the IAP to further consult on the reservoir modeling, validate the tracer testing protocol and answer technical questions about the Pure Water Project Las Virgenes-Triunfo. Staff recommends accepting NWRI's proposal, so the IAP can be reconvened in support of completing the required reservoir modeling and tracer study.

RECOMMENDATION(S):

Accept the proposal from the National Water Research Institute and authorize the Administering Agent/General Manager to execute a professional services agreement, in the amount of \$77,704, for administration and facilitation of an Independent Advisory Panel on the Pure Water Project Las Virgenes-Triunfo.

FISCAL IMPACT:

Yes

ITEM BUDGETED:

Yes

FINANCIAL IMPACT:

The cost of the work is \$77,074. Sufficient funding is available in the adopted Fiscal Year 2022-23 JPA Budget.

DISCUSSION:

On February 5, 2018, the results of 3-D hydrodynamic modeling of Las Virgenes Reservoir

were presented to the JPA Board. The purpose of the modeling was to confirm that the Pure Water Project Las Virgenes-Triunfo would comply with SWA regulations that had recently been issued by the State Water Resources Control Board. Overall, the modeling results were favorable and demonstrated that the Pure Water Project would meet the SWA regulations under most scenarios. However, there were three tracer simulations that resulted in dilution values of less than the minimum of 100:1. In each case, a strong southeast wind pushed the warmer purified water from the discharge point along the surface of the reservoir to the inlet of the Westlake Filtration Plant. Possible solutions to avoid the condition include a submerged and diffused discharge point and/or improved aeration/mixing in the reservoir.

The modeling was performed by Trussell Technologies and included review by an Independent Advisory Panel (IAP) of experts administered by NWRI. The purpose of the IAP was to validate the results of the hydrodynamic model and comment on the feasibility of the project to meet the SWA regulations. The IAP met on May 4, 2018, and was briefed on the project by JPA staff and Trussell Technology representatives.

Following is a summary of the IAP's conclusions:

- The JPA's Board and executive leadership appear committed to appropriate planning and investment to ensure regional water supply reliability.
- The proposed project effectively addresses the necessary water supply, regulatory and environmental considerations.
- The preliminary model analysis and scenarios are reasonable and provided the panel with valuable insight into the project.
- The proposed project, as presented to the IAP, appears to be capable of complying with the SWA regulations.

However, the IAP had the following recommendations for additional study:

- Perform additional modeling with a submerged diffuser inlet rather than a surface water inlet to predict if the regulatory dilution criterion is met in even the most challenging meteorological conditions.
- Conduct a probabilistic analysis to provide a high confidence level that the required dilution will be achieved consistently.
- Develop a monitoring plan that specifically identifies the constituents that will be monitored in the advanced water treatment plant product water, at Las Virgenes Reservoir and in the product water from the Westlake Filtration Plant.

At this time, staff recommends that the JPA re-engage the IAP to address the outstanding recommendations from the previous meeting, and assist with new questions that are pertinent to the successful delivery of the project.

NWRI's scope of work consists of engaging an IAP of five experts for the following tasks: one technical orientation (on-line) and one hybrid-format IAP meeting that will include a mix of remote and in-person participation. The IAP will prepare one technical memo to present its consensus findings and recommendations following the IAP Meeting. NWRI will provide the following services:

• Administer and manage the IAP. NWRI recruits and contracts with qualified experts, communicates with the IAP members and reimburses IAP-related expenses in

conformance with the contract requirements.

- Facilitate one technical orientation meeting (on-line) and one hybrid-format IAP meeting. NWRI will prepare IAP members for participation in meetings; work with the JPA team members to develop, contextualize, and organize the agenda and meeting materials; and distribute client-created review materials before each IAP meeting.
- Produce one IAP meeting memo following the IAP meeting. NWRI will edit and produce the draft and final reports that include the consensus findings, conclusions and recommendations of the IAP.

NWRI was able to confirm that four of the five original IAP members are available to provide continuity from the previous effort. The IAP would help inform the continued reservoir modeling, tracer testing for the reservoir to validate the model and offer opinions on other technical questions from the Pure Water Project team for the Advanced Water Purification Facility (AWPF), which may include classification of different categories of water being conveyed to and from the AWPF and the potential use of an air gap for brine disposal. These findings will be necessary in the JPA's continued consultation with the Division of Drinking Water (DDW) and other regulators for final acceptance of the AWPF and the Pure Water Project Las Virgenes-Triunfo.

Many agencies pursuing pure water facilities utilize and engage their IAP's through the duration of their program. The IAP can be used as a resource to address confidence in regulatory compliance and address other challenges or uncertainties along the way. It is expected that the IAP will continue to be engaged during the delivery of the Pure Water Project beyond the current contract with future panel meetings to be defined and contracted separately, as needed.

The IAP meeting will include the Pure Water Project team, consultants, state and regional regulators and other stakeholders. Engagement of project stakeholders, especially regulatory staff such as those from DDW and the Los Angeles Regional Water Quality Control Board, is one of the key benefits the IAP provides as it helps engage their input on the project specifics to meet regulations and build their confidence, which assists in guiding the permitting of the future facility. The contract would include coordination with such stakeholders to ensure they are integrated into the process and their concerns are addressed through the IAP.

Staff recommends accepting the proposal from the National Water Research Institute and authorizing the Administering Agent/General Manager to execute a professional services agreement, in the amount of \$77,704, for the administration and facilitation of an Independent Expert Advisory Panel to support the Pure Water Project Las Virgenes-Triunfo.

GOALS:

Construct, Manage and Maintain all Facilities and Provide Services to Assure System Reliability and Environmental Compatibility

Prepared by: Oliver Slosser, Engineering Program Manager

ATTACHMENTS:

Proposal by NWRI for Independent Advisory Panel

Proposal for Independent Advisory Services

Date:	May 16, 2023
To:	John Zhao, Director of Facilities, Las Virgenes Municipal Water District
From:	Kevin Hardy, Executive Director, NWRI
Subject:	Proposal for Independent Advisory Services in Support of Las Virgenes–Triunfo Pure Water Project

The National Water Research Institute (NWRI) is pleased to transmit this proposal to administer and facilitate an Independent Advisory Panel (Panel) to support the Las Virgenes Municipal Water District (Client) in the Las Virgenes-Triunfo Pure Water Project.

This proposal outlines the scope of work to engage a Panel of up to five experts (with an option to add a sixth expert) for the following tasks:

- One Technical Orientation (online)
- One hybrid-format Panel Meeting (a mix of remote and in-person participation at Client's headquarters).
- One technical memo report written by the Panel that presents its consensus findings and recommendations following the Panel Meeting.

The estimated cost for the services described in this scope of work is \$77,074 for a five-member Panel (Attachment 1).

The National Water Research Institute

Founded in 1991 by water utilities and civic leaders, NWRI is a 501c3 nonprofit that collaborates with water utilities, regulators, and researchers in innovative ways to help develop new, healthy, and sustainable sources of drinking water. We assemble Panels of scientific, technical, and policy experts that provide credible, independent peer review of water projects. Our Panels make recommendations that support water resource management decisions grounded in science and best practices.

JPA MEMBERS: Inland Empire Utilities Agency • Irvine Ranch Water District • Los Angeles Department of Water and Power Metropolitan Water District of Southern California • Orange County Sanitation District • Orange County Water District

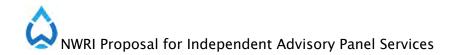
Our approach is collaborative by design, and we customize our processes and service offerings to meet the needs of our clients and the communities they serve. Our Panels support water resources projects in various stages of development in the United States and around the world.

Proposal Overview

NWRI will provide the following services:

- Administer and manage the Panel. We recruit and contract with qualified experts, maintain communication with the Panel members, and reimburse Panel-related expenses in conformance with the contract requirements.
- Facilitate one technical orientation meeting (online) and one hybrid-format Panel Meeting. We prepare Panel members for participation in meetings, work with client project team members to develop, contextualize, and organize the agenda and meeting material, and distribute client-created review materials to panel members before each Panel meeting.
- Produce one Panel meeting memo report following the Panel Meeting. We edit and produce the draft and final report that include the consensus findings, conclusions, and recommendations of the Panel.

Schedule


We will schedule and plan Panel meetings in collaboration with the project team. Planning a Panel meeting takes about 8 to 12 weeks and completing the Panel's final consensus report also takes about 8 to 12 weeks. Our planning processes are collaborative and communication intensive.

Expert Panel engagements typically span the life of a project. The Panel and project team usually meet annually, depending on the project needs and regulatory requirements. We collaborate with our clients and customize our processes and services to meet the needs of each client and the communities they serve.

Scope of Work

Each task in this scope of work is necessary to plan, facilitate, and report on a Panel meeting. This proposed scope of work and deliverables are intended to:

- Establish the Panel's membership, leadership, and independence.
- Plan meetings that meet the needs of the project team, regulators, and Panel members through each stage of the work.

• Report the Panel's consensus findings and recommendations in draft and final documents. Deliverables may consist of memos, technical memos, or formal reports, depending on the project.

Project Management and Administration

This task includes administering the expert Panel and managing project tasks to conform with the scope of work.

Identify, Engage, and Support Experts. Find, engage, administer, manage, reimburse, and compensate subject matter experts in each required discipline or area of relevant technical expertise.

- Work with the Client Project Team to develop a qualifications profile for prospective independent experts, including disqualifying potential conflicts of interest.
- Contact qualified individuals and develop a list of experts who are willing and available to participate on the Panel.
- Transmit a proposed Panel roster to the Project Team to review for approval and potential conflicts of interest.
- Prepare and transmit a final Panel roster to the Project Team.
- Engage Panel members with a letter that defines the project terms, conditions, expectations, and compensation.
- Notify the Project Team when all Panel members have confirmed their participation.

If a Panel member must leave the Project for personal or professional reasons, we will recruit and contract with another qualified expert to fill that role.

Panel Chair. NWRI will designate one Panel member as Panel Chair. The Chair will be responsible for providing guidance to the Panel and Project to stay in alignment with meeting objectives.

Manage and Administer Project. Conduct all necessary and appropriate project administration and management duties. These duties include communications, records management, billing, scope management, and related logistics to support the Project Team, Client, Panel, and stakeholders.

Meeting Planning and Preparation

We will schedule, plan, and prepare for Panel meetings in compliance with relevant contract requirements and/or milestones.

Panel Meeting Planning. We will work with the Project Team to plan and articulate the full scope of the Panel meeting. This collaborative process includes but is not limited to the following tasks:

NWRI Proposal for Independent Advisory Panel Services

- Plan the Panel meeting objectives, agenda, facilitation processes, and key questions for the Panel to support the Project.
- Curate scientific, technical, policy, and related questions that the Project Team would like the Panel to advise on, referred to as the Panel Charge.
- Develop and share relevant Project background information and data that will quickly orient Panel members to the Project before the meeting.
- Identify meeting attendees, including the Project Team, consultants, state and regional regulators, and other stakeholders.
- Discuss and clarify roles and expectations for all Panel meeting participants.

Pre-Meeting Workshop with Project Team and Panel Chair. NWRI will schedule an online one-hour Chair's workshop (estimated six to eight weeks before the Panel meeting) to develop the meeting objectives, including:

- Refining the Panel Charge.
- Discussing the agenda and facilitation processes to support the Panel.
- Ensuring that the pre-meeting review and meeting presentations contain the information the Panel will need as the basis for its findings, conclusions, and recommendations.

Panel Meeting Preparation. NWRI will work with the Project Team to prepare for each Panel meeting. Tasks include:

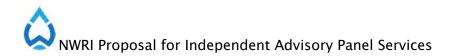
- Working with the Project Team to develop the meeting agenda.
- Supporting the Project Team and consultants as they define, develop, and prepare presentations on agenda topics. The Project Team will prepare and provide materials for the Panel members to review before and during the meeting.
- Facilitating the Panel meeting and distributing materials provided by the Project Team to support their presentations.
- Collecting background material from the Project Team, its partners, and other stakeholders as appropriate.
- Distributing an official pre-meeting review transmittal to the Panel members by email approximately ten (10) business days before the meeting so the Panel has time to review and consider the materials. The Project Team should provide all pre-meeting review documents to the NWRI Project Manager at least two weeks before the meeting.

• Preparing and transmitting a Panel meeting agenda to identified stakeholders and relevant panel meeting attendees.

Communicate Panel Meeting Logistics. NWRI will communicate logistics for each meeting to the Panel. If requested, NWRI can support the Project Team in notifying interested parties about Panel meetings and the availability of Panel meeting reports.

Meeting Facilitation

This task includes facilitating each Panel meeting and preparing and delivering the draft Panel meeting report.


Facilitate Panel Meetings. Panel meetings are planned to be completed in one day. The specific timing and length of panel meetings vary depending on the scope of the meeting as determined collaboratively by the Project Team and NWRI. NWRI will administer, facilitate, and moderate the meetings, including stakeholder participation at the meeting. Responsibilities include:

- Administer the Panel meeting. Duties include welcome, introducing NWRI to the participants, explaining the panel process, attendance, taking notes, and Panel support as described including editing, presenting, and transmitting the Panel's draft and final reports.
- **Facilitate the meeting.** NWRI and the Panel Chair will moderate the meeting. Meetings typically include an open session for the Project Team and invited stakeholders, and a private closed working session of the Panel.
- **Support the Panel process.** NWRI and the Panel Chair will keep the meeting on schedule to create a balance of Panel member engagement to exchange ideas and to have time for questions and answers.

As described above, the Project Team is responsible for the content and preparation of all scientific, technical, and policy presentations made at the meeting.

Closed Working Session. At the conclusion of the meeting presentations, the Panel will meet privately to plan and initiate drafting the Panel Meeting Report. During this private session, NWRI staff and Panel members will generally:

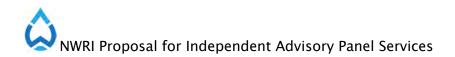
- Determine consensus on key findings and recommendations to anchor the Panel Meeting Report.
- Prepare a general outline of the Panel Meeting Report based on the questions presented and the information presented.
- Assign writing tasks for the Panel Meeting Report to Panel members based on their interests and expertise. In authoring their assigned sections, Panel members will consider information and other materials presented at the meeting and relevant

findings from other concurrent efforts. Panel members will apply their expert judgment to develop informed and useful recommendations.

Panel Meeting Report

The draft and final Panel meeting reports reflect the Panel's consensus on the questions presented at the meeting as well as related scientific, technical, and policy issues.

This task provides for the research, writing, editing, and review of the draft and final Panel meeting reports. NWRI panel reports are authored by the Panel under the leadership of the Panel Chair starting during the Panel's private working session at the conclusion of the meeting presentations.


The report is a consensus report of the Panel, meaning that each finding and recommendation will have the support of <u>all</u> Panel members.

NWRI will coordinate the Panel's efforts in drafting, editing, and transmitting the reports to the Project Team for review, and ensuring the final report is clear, accurate, and timely. NWRI and the Panel members will:

- Write and submit assigned sections to the Panel Chair and the NWRI Project Manager, who work collaboratively to compile the draft report.
- Review and edit the draft report. This process is coordinated by the Panel Chair and NWRI. The first work product is the draft Panel Meeting Report.
- Transmit the draft report to the Project Team for their review to identify mistakes of fact, unintended inconsistencies, and errors or omissions in the application of relevant science. To ensure Panel independence and credibility, neither the Panel nor NWRI will negotiate findings and recommendations absent a mistake of fact or mistaken application of fact by the Panel.
- A draft meeting report is typically completed within 8 to 12 weeks of the Panel meeting, but the report production timeframes depend upon the complexity of the meeting subject matter, the quality of the meeting materials prepared by the Client and its consultants, Panel requests for additional data and/or information, expert availability, and report writing and production logistics.
- NWRI will communicate and discuss report delivery expectations with the Project Team as necessary and appropriate.

Additional Services

Additional services not included in this scope of work may be necessary or appropriate. If needed, we can provide additional services by using a change order at the rates and terms set forth in this proposal.

Deliverables

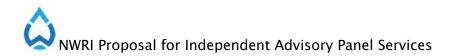
Project Management and Administration. This deliverable provides communication, coordination, and billing through delivery of the final report.

Transmit Panel Roster to Project Team and Stakeholders. NWRI will transmit a draft Panel Roster to the Client for review, and a Final Roster once all experts have signed an engagement letter.

Transmit Meeting Agenda to Project Team and Stakeholders. In collaboration with the Project Team, we will develop and produce a Panel meeting agenda and will distribute the pre-meeting review materials provided by the Project Team. The agenda will define objectives for the meeting; list the scientific, technical, and policy questions for the Panel to address; list the presenters, topics, and time for each topic to be covered; and allocate time to cover all subject matter necessary for the Panel members to reach consensus and give expert recommendations in the Panel report.

Facilitate Panel Meeting. Our Executive Director, Project Manager, or contracted facilitator will lead each meeting to achieve the objectives stated in the agenda in the allocated time.

Produce Draft and Final Panel Meeting Reports. Following the Panel Meeting, the Panel, as directed by the Chair, will author a draft recommendation report. We will edit, produce, and transmit the draft Panel Meeting Report to the Project Team about 8 to 12 weeks after the meeting. We will transmit the final Panel Meeting Report to the Project Team as soon as possible after receiving the Project Team's comments on the draft report.


Proposed Budget

The proposed budget estimate of \$77,074 includes the following Panel meetings:

Panel Technical Orientation will be an online meeting of one to two hours to orient the Panel to the Project history and to develop questions that will be addressed at the full Panel Meeting.

Panel Meeting will be in a hybrid format, with the NWRI Executive Director and some Panel members attending in-person at Client facilities, and NWRI staff and others attending remotely. The meeting will include presentations by the Project Team to support the questions they seek the Panel's feedback on. The Panel will write and deliver a draft report to the Client about 8 to 12 weeks after the meeting.

The budget is an estimate of the time and materials required to deliver each Panel meeting. Within the budgeted amounts for each task, we reserve the discretion to shift funds between tasks so long as the total contract sum is not exceeded.

Contracts longer than 24 months will be subject to staff rate revisal to current NWRI Boardapproved rates not to exceed the cost-of-living cumulative increase.

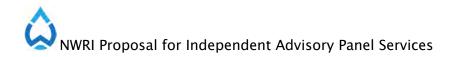
Proposed Payment Terms

Progress Payment No. 1. We will invoice the Client for 25 percent of the project budget when the final Panel roster is transmitted to the Project Team.

Quarterly invoices. We will invoice the Client quarterly through the end of the contract period. If the Client requires monthly billing, then we will update the budget estimate to include 12 additional hours for finance staff.

Considerations for In-Person Meetings

Proposals for in-person meetings include a Travel Allowance line item for reasonable travel expenses including transportation, accommodations, and meals for Panel members and NWRI support staff, along with the additional billable hours needed for Panel and staff to prepare for and attend the meeting.


Although we manage travel costs closely, most travel expenses including airfare and hotel rates are beyond our control. If travel costs are projected to exceed the budgeted amount, we will talk to the Contract Manager about options and prepare a change order for Client approval.

If the Client has a rate cap or a government reimbursement rate clause for hotel accommodations, then we ask that the Client book and pay for the hotel rooms. <u>We do not have access to government rates.</u>

For in-person meetings, the Client will provide the following:

- A computer and screen in the meeting room to serve slide presentations
- Audio/visual equipment that will support both in-person and remote participants
- Meals during the meeting, usually a light breakfast and lunch
- Drinking water, preferably in reusable/refillable cups instead of single-use containers

NWRI's Commitment to Sustainability. NWRI is committed to incorporating sustainability into our business practices as part of our responsibility to the communities we serve and the environment. As part of this commitment, NWRI kindly encourages clients to provide plant-based meals and refreshments, which use up to 50 percent less water than meals containing animal products, and set-up drinking water stations that refrain from using single-use cups/containers like plastic water bottles, which create about 2.5 million tons of CO_2 emissions each year.

Contact

If you have questions or would like to discuss this proposal further, please contact Suzanne Sharkey, Project Manager, at <u>ssharkey@nwri-usa.org</u> or (949) 258-2093.

About NWRI

NWRI is organized as both a Joint Powers Agency (JPA) pursuant to the California Government Code and a 501c3 nonprofit corporation pursuant to the Internal Revenue Code. Based in Fountain Valley, California, NWRI's JPA members include:

- Inland Empire Utilities Agency
- Irvine Ranch Water District
- Los Angeles Department of Water and Power
- Metropolitan Water District of Southern California
- Orange County Sanitation District
- Orange County Water District

NWRI Project Staff

The titles, project duties, and qualifications of NWRI staff who may work on this project are listed on our website at <u>https://www.nwri-usa.org/staff</u>.

Current or Related Projects

Recent or ongoing projects include:

- Statewide DPR Guidance for Stakeholders and/or Regulators in Colorado, Arizona, New Mexico, and Texas
- California State Water Resources Control Board, Division of Drinking Water on:
 - DPR Public Health Determination for Preliminary Statewide Regulations
 - DPR Statewide Source Control Regulatory Guidance
 - DPR Feasibility of Uniform Statewide Criteria
 - Uniform Statewide On-Site Nonpotable Water Regulations
 - Livestock Hydration Regulatory Guidance
 - California State Water Board Division of Water Quality to Optimize Evaluation of Bioanalytical Tools for Recycled Water Policy
- Orange County Water District (CA) Integrated Groundwater Replenishment System and Santa Ana River Public Health Monitoring projects
- Los Angeles Department of Water and Power (CA) Operation NEXT and Groundwater Replenishment Projects

NWRI Proposal for Independent Advisory Panel Services

- City of San Diego (CA) Pure Water San Diego
- Metropolitan Water District of Southern California (CA) Pure Water Southern California Program, Advanced Purification Center Demonstration Project
 - Los Angeles Bureau of Sanitation (CA) Hyperion Membrane Bioreactor Pilot Project
 - Hampton Roads Sanitation District (VA) Sustainable Water Initiative for Tomorrow
 - City of Boise (ID) Water Renewal Utility Plan
 - LOTT Clean Water Alliance (WA) Recycled Water Infiltration Study
 - East County (CA) Advanced Water Purification Project
 - Valley Water District (CA) Regional Potable Reuse Program (San Jose)
 - Anne Arundel County (MD) OurwAAter Managed Aquifer Recharge Program
 - Soquel Creek Water District (CA) Pure Water Soquel Groundwater Replenishment Project
 - One Water Monterey (CA) Pure Water Monterey Groundwater Replenishment Project
 - Palmdale Water District (CA) Regional Water Augmentation Program

Attachment 1: Proposed Panel Meeting Budget

NATIONAL WATER RESEARCH INSTITUTE

Proposed Budget for One Orientation Call and One Hybrid Meeting of the NWRI Panel for Las Virgenes Municipal Water District

	Р	roposed Bud	ed Budget for This Contract		
Expert Panel Member Honoraria at \$1,000 per day/\$125.00 per hour		Hours	Total Hours	Cost	
Technical Orientation Call (1.5 hour, Remote): Preparation, Participation, Follow-Up	5	8	40	\$5,000	
Workshop One (Hybrid): Preparation, Participation, Report Writing and Editing	5	32	160	\$20,000	
Panel Chair Additional Effort for Planning Calls, Managing Expert Assignments, etc.	1	24	24	\$3,000	
Subtotal - Panel Honorarium			-	\$28,000	
Nonprofit Institution Support Contribution (Thank you for your support!)			-	\$5,000	
Direct NWRI Staff Costs for Setup, Administration, Planning, Facilitation, Reporting	Hourly	/ Rates	Hours	Cost	
Executive Director	\$264	4.00	40	\$10,560	
Project Manager	\$17	3.00	88	\$15,224	
Communications Manager	\$15	9.00	30	\$4,770	
Administrative, Finance, and Events Staff	\$142	2.00	60	\$8,520	
Subtotal - Direct NWRI Staff Costs			-	\$39,074	
Travel Allowance			-	\$5,000	
Total Cost			-	\$77,074	