DEAR VALUED CUSTOMER:

While the supply of water to southern California is reduced, I am happy to report the quality of your drinking water remains excellent. This report provides details on the many ways we monitor your water, which is the most tested substance you consume.

Last year, Las Virgenes customers conserved a significant amount of water. Your efforts at saving water made a difference. However, even with a wet winter, judicial pumping constraints limit the amount of water that flows to our region. Your conservation efforts continue to be both important and necessary.

I invite you to stay informed on water issues through our website, www.LVMWD.com, our customer publication The Current Flow, which is included with each billing statement as well as being available online, and through our program of free quarterly facility tours. You are also welcome to attend meetings of the LVMWD Board of Directors, which are scheduled on the second and fourth Tuesday of each month at 5 p.m. at our Headquarters Building, 4232 Las Virgenes Road in Calabasas. Check the website for meeting schedule updates and agenda information. If you have questions about any aspect of your water service, please call Customer Service at 818.251.2200.

John R. Mundy

General Manager

4232 Las Virgenes Road 818-251-2200 www.LVMWD.com

CHINESE

此报告包含有关您的饮用水的重要信息。请人帮您翻译出来,或请看懂此 报告的人将内容说给您听。

KOREAN

이 보그서에는 귀하의 식수에 대한 중요한 내용이 실려있습니다. 그러므로 이 보그서를 이해할 수 있는 사람한테 번역해 달라고 부탁하시기 바랍니다.

German

con alguien que lo entienda.

Este informe contiene información

importante acerca de su agua potable. Haga

que alguien lo traduzca para usted, o hable

SPANISH

Der Bericht enthält wichtige Informationen über die Wasserqualität in Ihrer Umgebung. Der Bericht sollte entweder offiziell uebersetzt werden, oder sprechen Sie mit Freunden oder Bekannten, die gute Englischkenntnisse besitzen.

Calabasas CA 91302 818-251-2200 - www.LVIMWD.com

No. Hollywood CA PERMIT #8

STANDARD US Postage PAID

PRE-SORIED

Your partner in saving water our most precious resource.

ANNUAL

Water Analysis performed in 2009

COMMITMENT TO COMMUNITY

A MESSAGE FROM THE U.S. EPA

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water before treatment include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, which can be naturallyoccurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, U.S. EPA and the California Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Health Advisory for Persons with Weakened Immune Systems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

Some substances are known to especially affect people with weakened immune systems. This is the case with a microscopic parasite called, "Cryptosporidium" which can cause a life-threatening infection. Cryptosporidium is found in surface water (which comes from rivers, snowmelt, and streams as opposed to ground water from wells) and some occasionally pass into the treated water supply. Although Cryptosporidium may be spread via drinking water, it is more commonly spread through poor hygiene or contaminated foods.

In 2009, there was no evidence of Cryptosporidium in water leaving Metropolitan Water District of Southern California's (MWD) Jensen Water Treatment Plant, which disinfects water supplied to LVMWD, or at LVMWD's Westlake Filtration Plant.

Guidelines from EPA and the U.S. Centers for Disease Control and Prevention to reduce the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

WHERE DOES OUR WATER COME FROM?

Las Virgenes Municipal Water District was founded because there were no local, reliable sources of quality drinking water. As much of our service area rests on volcanic soil, there are no underground storage aquifers or streams that can be drawn upon.

LVWMD is a member agency of the Metropolitan Water District of Southern California, which is our sole supplier of potable water. Metropolitan delivers water to LVMWD from the State Water Project, bringing water from the western Sierras in northern California through the Sacramento – San Joaquin Delta where it is pumped into the California Aqueduct.

After a journey of several hundred miles, to its terminus near Sylmar, your water is filtered, treated and disinfected before being delivered to LVMWD for distribution.

While Metropolitan also receives water from the Colorado River, our area relies upon the State Water Project, which has an established history of providing very high quality water.

MANAGING YOUR WATER, FROM SNOWFALL TO YOUR TAP

The water LVMWD delivers to you begins as rain or snow that falls in the western Sierras, hundreds of miles to the north. It travels down the Sacramento River through the State Water Project to the Jensen Water Treatment Plant near Sylmar, which is operated by the Metropolitan Water District of Southern California (MWD), of which LVMWD is a member agency.

Along the way the water is pumped, filtered, disinfected, transferred through miles of underground pipe and delivered to your home. Importantly, it is continually monitored for quality and safety.

MWD and LVMWD take pride in protecting the water you drink. Reducing the exposure of water to contaminants not only means higher quality water, it reduces treatment costs. LVMWD and other water utilities that deliver surface water are required to complete a Watershed Sanitary Survey every five years. These surveys examine the potential sources of drinking water contamination and identify improved methods for protecting water quality at its source. LVMWD and MWD have completed these required surveys.

For More Information

LVMWD

Phone: (818) 251-2200 Fax: (818) 251-2109 E-mail: Customer_Service@LVMWD.com Additional information about drinking water safety and standards can be found at:

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH

Office of Drinking Water 601 N. 7th St. Sacramento, CA 94234-7320 http://www.cdph.ca.gov/certlic/drinkingwater/Pages/ default.aspx

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

Office of Ground and Drinking Water 401 M. St., SW Washington, DC 20460 www.epa.gov/safewater/

EPA SAFE DRINKING WATER HOTLINE (800) 426-4791 http://www.epa.gov/safewater/standards.html

www.cdc.gov

U.S. CENTERS FOR DISEASE CONTROL AND PREVENTION 1600 Clifton Road Atlanta, GA 30333 (800) 311-3435

SAMPLING RESULTS - WATER QUALITY REPORT (BASED ON DATA COLLECTED IN 2009) PRIMARY STANDARDS APPLY TO CONSTITUENTS THAT MAY BE UNHEALTHY AT CERTAIN LEVELS. They are measured in terms of Maximum Contaminant Levels (MCLs) established by the California Department of Health Services. If water contains a contaminant level above the primary MCL, the safety of the water cannot be assured. None of the tests for water served to LVMWD's customers exceeded the MCLs.

Parameter	Units	State or Federal MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Jensen Plant		LVMWD		Major Sources in Drinking Water
PRIMARY STANDARDS - Mandatory Health-Related Standards					Range Average - Highest RAA*		Range	Average - Highest RAA*	
CLARITY									
Combined Filter	NTU	0.3			Highest	0.06	Highest	0.42	Soil runoff
Effluent Turbidity	%	95 (a)	NA	NA	% < 0.3	100		100	
MICROBIOLOGICAL									
Total Coliform Bacteria (b)	%	5.0	(0)	NA	0-0.2	0	0-0	0	Naturally present in the environment
Heterotrophic Plate Count (HPC) (c)	CFU/mL	TT	NA	NA	TT	TT	TT	TT	Naturally present in the environment
INORGANIC CHEMICALS									
Aluminum (d)	ppb	1,000	600	50	ND - 100	76*	ND - 100	42	Residue from water treatment process; natural deposits erosion
Arsenic	ppb	10	0.004	2	2.5 - 3.9	3.1*	1.3 - 3.8	2.4	Natural deposits erosion, glass and electronics production wastes
Fluoride (e) Treatment-related	ppm	2.0	1	0.1	0.6 - 0.9	0.8	0.5 - 0.8	0.6	Water additive for dental health
Nitrate (as N) (f)	ppm	10	10	0.4	0.6 - 0.9	0.8*	ND - 0.8	0.3	Runoff and leaching from fertilizer use; septic tank and sewage; natural deposits erosion
Radiologicals									
Gross Alpha Particle Activity	pCi/L	15	(0)	3	ND - 7.3	3.4	ND - 6.9	3.2	Erosion of natural deposits
Gross Beta Particle Activity (g)	pCi/L	50	(0)	4	ND - 5.2	ND	ND	ND	Decay of natural and man-made deposits
Uranium	pCi/L	20	0.43	1	1.6 - 2.0	1.8	1.2 - 2.6	1.9	Erosion of natural deposits
DISINFECTION BY-PRODUCTS, DISINFECTANT R	ESIDUALS, AND	DISINFECTION B	Y-PRODUCTS PRE	CURSORS (h)					
Total Trihalomethanes (TTHM) (i)	ppb	80	NA	1	17 - 33	28	3 - 35	26	By-product of drinking water chlorination
Total Trihalomethanes (TTHM) (i)	ppb	80	NA	1	15 - 81	39*	3 - 35	29*	By-product of drinking water chlorination
Haloacetic Acids (five) (HAA5) (j)	ppb	60	NA	1	2.0 - 3.2	2.5	ND - 4.8	3.4	By-product of drinking water chlorination
Haloacetic Acids (five) (HAA5) (j)	ppb	60	NA	1	1.5 - 30	14*	ND - 4.8	4.5*	By-product of drinking water chlorination
Total Chlorine Residual	ppm	[4.0]	[4.0]	NA	1.5 - 3.0	2.4*	ND - 2.9	2.0	Drinking water disinfectant added for treatment
Bromate (k)	ppb	10	0.1	5.0	4.2 - 12	6.9*	NA	NA	By-product of drinking water ozonation
DBP Precursors Control (TOC)	ppm	TT	NA	0.30	TT	TT	TT	TT	Various natural and man-made sources

Secondary Standards – Aesthetic Sta				Range	Average - Highest RAA*	Range	Average		
Aluminum (d)	ppb	200	600	50	ND - 100	76*	ND - 100	42	Residue from water treatment process; natural deposits erosion
Chloride	ppm	500	NA	NA	77 - 82	79*	79 - 83	81	Runoff/leaching from natural deposits; seawater influence
Color	Units	15	NA	NA	1 - 2	2*	ND - 5	ND	Naturally-occurring organic materials
Manganese	ppb	50	NL = 500	20	ND	ND	ND - 30	9	Leaching from natural deposits
Odor Threshold	TON	3	NA	1	2	2	ND - 3	ND	Naturally-occurring organic materials
Specific Conductance	µS/cm	1,600	NA	NA	570 - 610	590*	580 - 620	600	Substances that form ions in water; seawater influence
Sulfate	ppm	500	NA	0.5	56 - 70	66*	58 - 67	62	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (TDS)	ppm	1,000	NA	NA	310 - 340	330*	320 - 370	340	Runoff/leaching from natural deposits; seawater influence

Turbidity (a)	NTU	5	NA	NA	0.04 - 0.05	0.04*	0.07 - 0.6	0.25	Soil runoff

Other Parameters					Range	Average - Highest RAA*	Range	Average	
MICROBIOLOGICAL									
HPC (c)	CFU/mL	TT	NA	NA	ND - 20	ND	ND - 240	1	Naturally present in the environment
CHEMICAL									
Alkalinity	ppm	NA	NA	NA	84 - 93	90*	89 - 104	98	
Boron	ppb	NL = 1,000	NA	100	190 - 220	200*	NA	NA	Runoff/leaching from natural deposits; industrial wastes
Calcium	ppm	NA	NA	NA	27 - 33	31*	27 - 30	29	
Chlorate	ppb	NL = 800	NA	20	ND	ND - 79	NA	NA	By-product of drinking water chlorination; industrial pro- cesses
Chromium VI (I)	ppb	NA	NA	1	0.36 - 0.63	0.50*	NA	NA	Industrial waste discharge; could be naturally present as well
Corrosivity (m) (as Aggressiveness Index)	AI	NA	NA	NA	12.0 - 12.1	12.0	NA	NA	Elemental balance in water; affected by temperature, other factors
Corrosivity (n) (as Saturation Index)	SI	NA	NA	NA	0.13 - 0.27	0.21	-0.2 - 0.2	0.07	Elemental balance in water; affected by temperature, other factors
Hardness	ppm	NA	NA	NA	120 - 130	130*	120 - 140	127	
Magnesium	ppm	NA	NA	NA	11 - 12	13*	11 - 15	13	
рН	Units	NA	NA	NA	8.1 - 8.3	8.2	6.2 - 8.9	7.8	
Potassium	ppm	NA	NA	NA	2.6 - 2.9	2.8*	NA	NA	
Sodium	ppm	NA	NA	NA	66 - 74	68*	62 - 66	64	
TOC	ppm	TT	NA	0.30	1.2 - 1.7	1.7*	2.0 - 3.1	2.7	Various natural and man-made sources
Vanadium	ppb	NL = 50	NA	3	6.1 - 6.7	6.4	NA	NA	Naturally-occurring; industrial waste discharge
N-Nitrosodimethylamine (NDMA) (o)	ppb	NL = 0.01	0.003	0.002	0.002 - 0.006	ND - 0.01	NA	NA	By-product of drinking water chloramination; industrial processes

ABBREVIATIONS

- AI Aggressiveness Index
- AL Action Level
- CFU Colony-Forming Units
- DBP Disinfection By-Products
- DLR Detection Limits for purposes of Reporting
- MCL Maximum Contaminant Level
- MCLG Maximum Contaminant Level Goal
- MRDL Maximum Residual Disinfectant Level MRDLG Maximum Residual Disinfectant Level Goal
- N Nitrogen
- NA Not Applicable
- ND Not Detected
- NL Notification Level
- NTU Nephelometric Turbidity Units
- P or ND Positive or Not Detected
- pCi/L picoCuries per Liter
- PHG Public Health Goal
- ppb parts per billion or micrograms per liter (µg/L) ppm parts per million or milligrams per liter (mg/L)
- ppm parts per million or milligrams per liter (mg/L) RAA Running Annual Average
- SI Saturation Index (Langelier)
- TOC Total Organic Carbon
- TON Threshold Odor Number
- TT Treatment Technique
- µS/cm microSiemen per centimeter; or micromho per centimeter (µmho/cm)

FOOTNOTES

(a) For the Jensen plant, the turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1 NTU at any time. For the Westlake plant, the turbidity level of the filtered water shall be less than or equal to 0.5 NTU in 95% of the measurements taken each month and shall not exceed 5.0 NTU at any time. Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance. The averages and ranges of turbidity shown in the Secondary standards were based on the treatment plant effluent.

(b) Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform-positive. Compliance is based on the combined distribution system sampling from all the treatment plants. In 2009, 994 samples were analyzed. The MCL was not violated.

(c) All MWD distribution samples collected had detectable total chlorine residuals and no HPC testing was required. HPC reporting level is 1 CFU/mL.

(d) Aluminum has both primary and secondary standards.

(e) Metropolitan was in compliance with all provisions of the State's Fluoridation System Requirements. Control Range - 0.7 - 1.3 ppm, Optimal Fluoride Level - 0.8 ppm

(f) State MCL is 45 mg/L as nitrate, which is the equivalent of 10 mg/L as N.

(g) The gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.

(h) Metropolitan was in compliance with all provisions of the Stage 1 Disinfectants/Disinfection By-Products (D/DBP) Rule. Compliance was based on the RAA.

(i) Reporting level is 0.5 ppb for each of the following: bromodichloromethane, bromoform, chloroform, and dibromochloromethane.

(j) DLR is 1.0 ppb for each of the following: dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid; and 2.0 ppb for monochloroacetic acid.

(k) Bromate reporting level is 3 ppb.

(I) Chromium VI reporting level is 0.03 ppb.

(m) AI <10.0 = Highly aggressive and very corrosive water; AI > 12.0 = Nonaggressive water; AI (10.0 - 11.9) = Moderately aggressive water

(n) Positive SI index = non-corrosive; tendency to precipitate and/or deposit scale on pipes; Negative SI index = corrosive; tendency to dissolve calcium carbonate

(o) Analysis conducted by Metropolitan's Water Quality Laboratory using Standard Methods 6450B.

ADDENDUM TO 2009 WATER QUALITY REPORT

Parameter	Year Sampled	Unit	AL	PHG (MCLG) [MRDLG]	State DLR	90th Percentile	# Sites Sample	# Sites Above AL	Exceeded AL Y/N	Major Sources in Drinking Water
Lead and Copper Tap Monitoring										
Lead	2008	ppb	15	0.2	5	6.5	30	0	N	House pipes internal corrosion; erosion of natural deposits
Copper	2008	ppb	1300	300	50	230	30	0	N	House pipes internal corrosion; erosion of natural deposits

ABBREVIATIONS

AL Action Level

DLR Detection Limits for purposes of Reporting

MCL Maximum Contaminant Level

- MCLG Maximum Contaminant Level Goal
- MRDL Maximum Residual Disinfectant Level
- MRDLG Maximum Residual Disinfectant Level Goal
- PHG Public Health Goal
- ppb parts per billion or micrograms per liter (µg/L)
- ppm parts per million or milligrams per liter (mg/L)

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Las Virgenes Municipal Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead